• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 523
  • 262
  • 195
  • 49
  • 22
  • 20
  • 16
  • 16
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1290
  • 869
  • 325
  • 239
  • 231
  • 219
  • 208
  • 203
  • 190
  • 119
  • 106
  • 96
  • 92
  • 91
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The role of DC-Sign in the regulation of the function and survival of dendritic cells in HIV-1 infection

Chung, Pui-yee, Nancy, January 2004 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
62

Development of functional human dendritic cell subsets in vitro and in vivo in hu/NOD/SCID chimeric mice : important implications in dentritic cell-based immunotherapy /

Wahid, S. Fadilah Binti Abdul. January 2005 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
63

Skin dendritic cells : activation, maturation and migration

Eaton, Laura January 2012 (has links)
Langerhans’ cells (LC) are the dendritic cells (DC) of the epidermis and, as sentinels of the immune system, act as a bridge between the innate and adaptive immune responses. When LC, and other DC, recognise an antigen or pathogen they mature and are stimulated to migrate to the lymph nodes, where they orchestrate immune responses. Pathogen derived toll-like receptor (TLR) ligands, and chemical allergens, are recognised as being potentially harmful and stimulate LC to mobilise and mature. Cytokine signals, including tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-18, all induce LC migration and are required for initiating LC mobilisation in response to certain contact allergens. Subsequently, chemokines promote the migration and localisation of LC within the draining lymph nodes. Chemokines are also involved in shaping the adaptive immune response by promoting differential T cell activation, such as T helper (Th)1 or Th2 responses, which are involved in immunity against different pathogens, and also in the development of different types of chemical allergy. The hypothesis is that LC phenotype (activation, migration and chemokine production), is dependent on the nature of the challenge ligand. The murine LC-like cell line XS106 was used to investigate the response of LC following stimulation with TLR ligands and chemical allergens. In addition, LC migration in response to these stimuli was investigated in vivo and the role of TNF-α was examined using mice deficient in either one of the two TNF-α receptors; TNF-R1 or TNF-R2.XS106 cells and freshly isolated LC were associated with a selective type 2 immune response, as determined by preferential expression of type 2 associated chemokines. Furthermore, XS106 cells responded to type 2, but not to type 1, associated TLR ligands. In contrast, all of the TLR ligands tested induced the migration of LC from the epidermis in vivo. Similarly, chemical allergens failed to induce a maximal response of XS106 cells, but did induce the migration of LC in vivo. There were differences in LC migration between the two mouse strains tested, with C57/BL6 strain mice being less responsive to administration of TNF-α and the contact allergen oxazolone compared with BALB/c strain mice. However, C57/BL6 and BALB/c strain mice responded similarly after exposure to the contact allergen 2,4-dinitrochlorobenzene (DNCB). Furthermore, DNCB was able to induce LC migration in mice deficient in TNF-R2, the TNF-α receptor expressed by LC.Collectively, these data suggest a paradigm in which keratinocytes and LC in the epidermis have distinct roles in promoting type 1 and type 2 immune responses, respectively. Therefore, LC may not be activated directly by certain TLR ligands or chemical allergens that are associated with type 1 responses. Consequently the migration of LC in vivo after encounter with these stimuli may be secondary to interaction with keratinocytes, or with other skin resident cells. Together, LC and keratinocytes allow the epidermis to respond to a range of pathogens, in addition to developing the necessary type 1 and type 2 responses. Chemical allergens may have divergent cytokine signalling requirements for the induction of LC migration as, unlike other contact allergens (and other stimuli such as irritant and ultraviolet [UV]B exposure), DNCB may induce LC migration independently of TNF-α.
64

Monocytes and dendritic cells in human peripheral blood

Lentini, Tim January 2013 (has links)
Inflammatory myeloid dendritic cells (DCs) are critical in the pathogenesis and maintenance of psoriasis vulgaris, a chronic inflammatory skin disease of unknown etiology. New ways to define these cells, and their precursors, may allow us to better understand their role in inflammation. Immunohistochemistry was performed on frozen tissue sections of normal and psoriasis biopsies to examine the dermal expression of potential markers of inflammatory DCs, namely CLEC9A, CD103, SlanDC, and TREM-1. The allostimulatory capacity of DC subsets (of SlanDC+ and CD1c+) was compared in a mixed leukocyte assay (MLR). Potential precursors of inflammatory DCs were FACS-sorted for transcriptomic profiling and functional assays. CLEC9A, CD103, and SlanDC did not prove useful in uniquely identifying myeloid dendritic cells in normal skin, and inflammatory dendritic cells in inflammation. TREM-1 was highly upregulated in psoriasis lesional skin as compared to non-lesional, and its activation may be critical in the maintenance of inflammation. Contrary to published findings, CD1c+ DCs possessed a higher allo-stimulatory capacity than SlanDCs, and induced greater IL-17 in T cells. TREM-1 may provide a novel therapeutic target for psoriasis treatment. The six circulating monocyte and dendritic cell populations in human peripheral blood were obtained via FACS sorting, and their genomic profiles will be examined. By comparing the genomic profiles of the six circulating monocyte and dendritic cell populations in human blood, and examining their allo- and autostimulatory capacities in a peptidoglycan (PGN) stimulated in vitro model of inflammation, the source of these inflammatory dendritic cells can be identified, and provide future targets of therapy for this psoriasis.
65

Discovery of a New Dendritic Cell Subset Derived from Immature Granulocytes

Geng, Shuo 23 May 2011 (has links)
No description available.
66

Implication of the nuclear hormone receptors in immunity and anti-pathogen response of dendritic cells. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Ng, Sin Man. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 96-104). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
67

Synthesis and Studies of Dendritic Poly (Ether Imine) Boronates and Cholesteryl-Functionalized Mesogens

Prabhat, Kumar January 2015 (has links) (PDF)
Synthesis and Studies of Dendritic Poly(Ether Imine) Boronates and Cholesteryl-Functionalized Mesogens SYNOPSIS Dendrimers are hyperbranched synthetic macromolecules having branches-upon-branches structures, high molecular weights, globular shapes and monodispersities. Dendrimers possess a large number of modifiable functional groups at their peripheries. Initial efforts were largely concerned with the synthesis, design and development of new dendrimers. Exploring the chemical, biological and material applicability of these macromolecules are relevant to current interests, as a result of the unique structural features of dendrimers. Incorporation of transition metals and organic moieties at the peripheries of the dendrimers was studied to determine their efficacies in catalysis. Evolution of dendritic effects was observed in few instances, that were non-linear in nature. On the other hand, dendritic peripheries were also utilized to study mesogenic properties in liquid crystals. Chapter 1 of the Thesis gives an overview of the types of dendrimers, its structural features and their application in catalysis and as liquid crystalline materials. Chapter 2 describes the synthesis of a new type of poly(ethyl ether imine) dendrimer, having nitrogen as a branching unit, ethylene moiety as the spacer and an oxygen as the connecting linker. Synthesis, characterization, and studies of the photophysical properties of these dendrimers are described in this chapter. The molecular structure of second generation dendrimer is shown in Figure 1. Synthesis of this dendrimer was initiated using 2,2'-oxy-bis(ethan-1¬amine) as the core. The reaction sequence of two alternate nucleophilic substitutions and two alternate reductions, involving ethyl bromoacetate and bromoacetonitrile as monomers was employed in the synthesis of the dendrimer. The formation of dendrimers having ether linkage and tertiary amines as branching unit was established by spectroscopies and mass spectrometry. A number of functional groups, such as, acid, alcohol, amine, ester and nitrile are present at the peripheries of each generation the dendrimers that open up the possibilities for further studies. Carboxylic acid terminated poly(ethyl ether imine) dendrimers are substituted iminodiacetic acids, belonging to the class of polyaminocarboxylic acid. Methyl iminodiacetic acid boronates with NB coordination have emerged as an excellent substitute for unstable boronic acids. Upon increasing the steric bulk on the nitrogen moiety, the hydrolytic stability of the boronates to a base-catalyzed hydrolysis is increased. Combining the structure of carboxylic acid terminated dendrimer and the stability of the dendritic boronates, such dendritic iminodiacetic acids were reacted with arylboronic acids to prepare bis-and tetrakis-boronates (Figure 2). Kinetic hydrolytic studies of boronates were conducted to assess the stabilities of the newly synthesized dendritic boronates. From the studies it was observed that the tetrakis-boronate was ~20 times more stable in comparison with dimeric and monomeric boronates (Figure 3). Subsequent to synthesis and hydrolytic stability studies, C-C bond-forming Suzuki-Miyaura cross-coupling reactions were conducted. A comparison of the reactivities among monomeric, dimeric and tetrameric arylboronates in C-C bond-forming reactions showed a higher reactivity of monomeric and dimeric boronates, than the tetrameric aryl boronate to construct ter-and tetra-aryl in one-pot iterative manner (Figure 4). Chapter 3 of this Thesis describes the synthesis and characterization of dendritic boronates and studies of their hydrolytic stability in Suzuki-Miyaura cross¬coupling reactions to construct ter-and tetraaryls. Figure 4. Synthesis of (a) ter-(6) and (b) tetra-aryls (7) by following one-pot iterative cross-coupling reactions. Step-wise iterative synthesis of dendrimer allows a uniform branching throughout the structure. The first and second generation poly(ether imine) dendrimer series, having hydroxyl groups at their peripheries were chosen for further modification. A versatile mesogenic group, namely, cholesterol was covalently attached at the peripheries of the dendrimers with succinic moiety as linker, so as to install 4 and 8 cholesteryl moieties at the peripheries of the dendrimers (Figure 5), that were characterized by H, C NMR spectroscopies and elemental analysis, so as to confirm their structural homogeneities. Figure 5. Molecular structures of the first and second generation dendritic mesogens. Subsequent to synthesis and characterization, liquid crystalline properties of all the dendritic mesogens was assessed through differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (XRD) studies. In POM study, broken fan or leaf like texture revealed the lamellar arrangement, whereas homeotropic appearance of texture on surfactant (cetyltrimethylammonium bromide) coated substrate indicated the lamellar nature of G1-Et-(OCS)4, G1-Pr-(OCS)4 and G2-Pr-(OCS)8 (Figure 6). From DSC studies, the change in enthalpy was found to increase with increase in generation and change in enthalpy per mesogenic unit was found to be ~ -1 1-2 kJ mol, which indicated the mesophase arrangement to be lamellar. Decrease in the length of spacer dendritic backbone and increase in the generation increased the isotropization temperature of the dendritic liquid crystals. Variable temperature XRD studies were undertaken to characterize the mesophase property. Two sharp peaks in small angle region and a diffused halo in wide angle region in XRD pattern of the material suggested the smectic A (SmA) liquid crystalline arrangement of G1-Et-(OCS)4, G1-Pr-(OCS)4 and G2-Pr-(OCS)8 (Figure 7). Figure 6. POM textures of (a) G1-Et-(OCS)4 at 136 oC; (b) G2-Et-(OCS)8 at 129 oC; (c) G1-Pr-(OCS)4 at 92 oC; (d) G2-Pr-(OCS)8 at 118 oC and (e) transition temperatures for dendromesogens (DSC second heating cycle, heating-cooling rate = 10 oC min-1). Figure 7. Small angle XRD profiles of: (a) G1-Pr-(OCS)4 and (b) G2-Et-(OCS)8 at 60 o C (black), 150 oC (red) and 180 oC (green), (Insets: Lorentzean fit of wide angle peak). The second generation ethyl-linker dendrimer G2-Et-(OCS)8 exhibited a layered structure with a superimposed in-plane modulation (SmÃ), the length of which corresponded to a rectangular column width. Chapter 4 describes the synthesis, characterization and studies of mesophase property and fluorescence property of cholesterol functionalized homologous pairs of the PETIM dendritic liquid crystals. Peripheral functionalization of the dendrimers provides an easy access to dendritic liquid crystalline materials. The covalent functionalization was extended further with the dendrimers for both the series, so as to have 2, 4, 8 and 16 cholesteryl groups at the peripheries of 0, 1, 2 and 3 generation dendrimers, respectively, having succinic amide and phthalic ester functionalities for 1, 2 and 3 generation dendrimers with 4, 8 and 16 cholesteryl groups. Molecular structures of third generation dendrimers are shown in Figure 8. Figure 8. Molecular structures of third generation G3-Pr-(NHCS)16 and G3-Pr-(OCP)16. Subsequent to synthesis and characterization, mesophase property was studied through POM, DSC and XRD techniques. In POM study, a birefringent texture was observed in heating and cooling cycles. Leaflet, broken fan or bâtonnet like texture suggested the layered arrangement of the molecules (Figure 9). In DSC studiues, it was observed that the amide-linked dendrimers showed higher glass transition and isotropization temperatures than that of ester-linked dendrimers within the same generation irrespective of the back-bone of the dendrimer. Succinic moiety linked dendrimers showed lower glass transition temperature than that of phthalic moiety linked dendrimers and consequently, larger mesophase range. The change in enthalpy for isotropization was found to increase with increase in generation, whereas change in -1 enthalpy per mesogenic unit was 1-2 kJ mol, indicative of a layered arrangement in the mesophase. Figure 9. POM textures (20x) of (a) G3-Pr-(NHCS)16 at 90 oC; (b) G3-Pr-(OCS)16 at 90 ooo C; (c) PG1-(NHCS)4 at 134 C; (d) G3-Pr-(OCP)16 at 98 C and (e) transition temperatures for dendromesogens (second cycle, heating-cooling rate = 10 oC min-1). Appearance of two sharp peaks in small angle region and a wide halo in wide angle region in XRD pattern supported lamellar mesophase property of the material (Figure 10). On decreasing the temperature, increase in the layer thickness also suggested the smectic A arrangement of the molecules except third generation phthalate derivative G3-Pr-(OCP)16, which showed rectangular columnar mesophase. For all the dendromesogens, the layer thickness increased with the increase in generation. Upon protonation, the first generation dendrimer showed a change in mesophase from simple smectic A to modulated smectic A with decrease in layer thickness. The change in liquid crystal property of the dendromesogens from lamellar to columnar mesophase by changing the linker of the mesogen is unknown so far in the dendrimer liquid crystals. Chapter 5 gives details of synthesis, characterization and mesophase property study of ester-and amide-linked dendritic liquid crystals. Overall, the Thesis establishes a synthetic methodology for the synthesis of a new homologous series of poly(ether imine) dendrimers with ethyl spacer; synthesis of dendritic boronates and their studies in cross-coupling reactions through in-situ slow release of boronic acid; hydrolytic stability study showed higher stability of dendritic boronates which was used in one-pot iterative cross-coupling reactions to construct ter-and tetra-aryls. decrease in linker length in dendrimer backbone modified the thermal, as well as, mesophase behavior of the dendritic liquid crystals; change in the linker functionality from ester to amide changed the thermal behavior of dendritic liquid crystals; a switching of mesophase property from lamellar to columnar was observed by changing the rigidity of the linker from succinate to phthalate without changing the linker length. The results of the above chapters are in different stages of publications: 1 Dendritic iminodiacetic acids and their boronates in Suzuki-Miyaura cross¬coupling reactions. Sharma, A.; Kumar, P.; Pal, R.; Jayaraman, N. Revised Manuscript submitted. 2 In-plane modulated smectic à vs smectic A lamellar structures in homologous pairs of dendritic liquid crystals. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Revised Manuscript submitted. 3 Effect of protonation on dendritic liquid crystals of poly(ether imine) dendrimers: structure property relationship studies. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Manuscript submitted. 4 Smectic to rectangular columnar switch from succinic to phthalic linker alteration in poly(ether imine) dendritic liquid crystals. Kumar, P.; Rao, D. S. S.; Prasad, S. K.; Jayaraman, N. Manuscript in preparation.
68

Identification of microRNAs involved in the development and function of follicular dendritic cells

Aungier, Susan Rebecca January 2014 (has links)
Follicular dendritic cells (FDCs) are key elements of secondary lymphoid organs where they form the stromal component of B-cell follicles. FDCs possess extensive dendritic process that trap intact antigen via Fc and complement receptors on the cell surface. The antigen is displayed to B-cells, providing a basis for selection of high affinity B cells. FDC also have important roles in facilitating the clearance of apoptotic B cells by the secretion of the opsonising factor MFGE8. It is well established that lymphotoxin signalling is required for FDC maturation but the specific details of the molecular mechanisms that regulate FDC development and differentiation are not fully understood. MicroRNAs (miRNAs) are non-coding RNAs of approximately 18-25 nucleotides in length that regulate gene expression at the post-transcriptional level. MiRNAs bind to their target gene transcripts as part of the RNA induced silencing complex and repress translation of the target gene product. The objective of this study was to identify miRNAs that play a role in the development and function of FDCs. An in vivo murine model of FDC de-differentiation was used to provide material for miRNA analysis. By comparison of miRNA profiles from spleen tissue with FDC at different stages of de-differentiation, we would be able to obtain a miRNA signature for mature FDC. Spleens were collected at various time points over a 28 day period following transient blockade of lymphotoxin signalling. A variety of methods were used to profile the miRNAs expressed at different time points during the suppression and recovery of the FDC network. Comparison of the miRNA profiles of spleens containing mature, partially de-differentiated, and fully de-differentiated FDC identified a number of miRNAs that were differentially expressed during FDC de-differentiation. To assess the role of specific miRNAs in FDC development, the mouse FDC-like cell line, FL-YB, was used as an in vitro model system. FL-YB cells were used to perform gain-offunction and loss-of-function studies on selected miRNAs and to assess the effects of various stimuli/conditions on miRNA expression. The effects of different treatments on cell proliferation, morphology and adhesion, and on gene expression by FL-YB, were monitored. Loss-of-function studies for one of the selected miRNA (miR-100-5p) revealed a significant effect on a number of gene transcripts involved in mediation of the germinal centre response (Il-6, Tlr4, Ptgs1/2). These data indicate that miR-100-5p has a role in regulating Il-6, Tlr4 and Ptgs1/2 transcripts. None of these transcripts contain predicted target sites for miR-100-5p and so the effect of miR-100-5p on these transcripts is likely to be indirect. Further studies on these miRNA: target interactions are required to elucidate the mechanisms and biological consequences of miRNA regulation in FDCs.
69

Characterisation of putative dendritic cell markers in salmonids and modulation of gene expression following stimulation with interleukin-4/13

Johansson, Petronella January 2014 (has links)
Dendritic cells (DCs) are leukocytes specialized in antigen presentation. As competent stimulators of naive T lymphocytes, they link the innate and adaptive immune responses of vertebrates. The RAG-mediated adaptive immune system appeared approximately 500 million years ago in jawed fish and a number of studies suggest that DCs exist in bony and cartilaginous fish. However, the exact role of DCs in the fish immune system is not determined and questions remain as to whether a cell type truly homologous to DCs in homeotherms does exist. My project aimed to identify potential DCs surface markers (CD209A and LAMP3) in rainbow trout (Oncorhynchus mykiss) leukocytes for evaluation of the expression patterns by qRT-PCR under different conditions and stimuli, in vitro and in vivo. Another goal was to validate and evaluate the specificity of a produced anti-trout CD209A polyclonal antibody to further characterise antigen presenting cells (APCs) in fish. The methodology was to look for up-regulation of the predicted markers together with other markers known to be expressed by DCs in mammals and to evaluate at the mRNA and protein expression level after in vitro stimulation of trout primary leukocytes with trout rIL-4/13. Trout CD209A and LAMP3 mRNA was expressed in the main lymphoid organs of fish and could be modulated with microbial mimics. Upon in vitro stimulation of trout primary leukocytes with trout rIL-4/13, trout CD209A mRNA expression was up-regulated together with both CD83 and the MHC class II chain known to be expressed by mammalian DCs. In addition, CD209A protein expression was highly induced by trout rIL-4/13. Taken together, these results suggests that the characterisation of DCs in trout with tools such as transcript evaluation of surface markers and the anti-trout CD209A antibody, could help to more precisely define these leukocyte subsets. These findings could have further impact on fish vaccine improvements and be of importance for the aquaculture industry, by optimising stimulation of adaptive immunity.
70

Definition of the early HIV-1 signalosome in dendritic cells

Khatamzas, Elham January 2013 (has links)
DCs are critical to the early events of HIV-1 infection. They are the first cells that HIV-1 encounters at mucosal surfaces and as sentinel antigen-presenting cells of the immune system these should alarm the immune system and activate innate immune defences to recruit effective adaptive immunity and viral clearance. A peculiar characteristic of HIV – in contrast to other ssRNA viruses – is its ability to completely evade host innate recognition pathways. Additionally, it has the unique ability to manipulate the endo-lysosomal system of DCs and promote transmission via trans-infection to CD4+ T cells across virological synapses. However, it is largely unknown how HIV-1 is sensed by the innate immune system. Here, a multipronged experimental approach based on phosphoproteomics, transcriptomics and custom RNAi screen was developed to characterize the early signaling complex induced by HIV-1 in DCs. A novel method of phosphoproteomics to identify the HIV-1 phosphoproteome in DCs showed that 342 proteins were differentially phosphorylated following 10 min of HIV-1 infection compared to time-matched mock-infected DCs. Functional analysis of these phosphoproteins showed enrichments in several cellular pathways, including vesicular trafficking, cytoskeletal rearrangements and the secretory pathway and a relative paucity of signaling molecules involved in inflammatory pathways. Proteomics analysis of HIV-1 virions was undertaken to identify host molecules hijacked by HIV-1 during viral replication and revealed a close interaction between the virus and the endo-lysosomal system. Transcriptomics analysis of HIV-1 infected DCs showed a muted immune response with no detectable differentially regulated genes. The results of the phoshoproteomic screen provided the basis for a custom RNAi screen to identify host proteins that are differentially phosphorylated by the virus and required for efficient trans-infection from DCs to CD4+ lymphocytes. The results of this screen showed that 54 of the 120 host factors tested were required for efficient viral transfer to CD4+ T cells and characterize the compartment that HIV-1 is internalized in on a molecular level. Two host factors identified within the HIV-1 phosphoproteome were chosen for further studies. Studies of BLOC-1 (biogenesis of lysosome-related organelles complex-1) and its subunits identified a role for snapin in HIV-1 trans-infection and HIV-1 and TLR8 sensing. Snapin may act as determinant of sorting of HIV-1 intraluminal vesicles to non-degradative, non-immunogenic compartments by activating mammalian target of rapamycin, mTOR, and inhibiting autophagy. Furthermore, HIV-1 triggered dephosphorylation of the cytosolic tyrosine phosphatase possibly via the interaction of host CD47 incorporated in the virion and the transmembrane glycoprotein SIRPα expressed on DCs. Blocking of this interaction with an inhibitory CD47 antibody resulted in a reduction of HIV-1 replication. Taken together, this multipronged approach reveals the complexity of the interaction of HIV-1 with the host cell machinery and identifies novel mechanism of the immune evasion tactics usurped by HIV-1.

Page generated in 0.0699 seconds