Spelling suggestions: "subject:"sense stereo"" "subject:"denna stereo""
1 |
A Phase Based Dense Stereo Algorithm Implemented in CUDAMacomber, Brent David 2011 May 1900 (has links)
Stereo imaging is routinely used in Simultaneous Localization and Mapping (SLAM) systems for the navigation and control of autonomous spacecraft proximity
operations, advanced robotics, and robotic mapping and surveying applications. A key step (and generally the most computationally expensive step) in the generation
of high fidelity geometric environment models from image data is the solution of the dense stereo correspondence problem. A novel method for solving the stereo
correspondence problem to sub-pixel accuracy in the Fourier frequency domain by exploiting the Convolution Theorem is developed. The method is tailored to challenging aerospace applications by incorporation of correction factors for common error sources. Error-checking metrics verify correspondence matches to ensure high quality depth reconstructions are generated. The effect of geometric foreshortening caused by the baseline displacement of the cameras is modeled and corrected, drastically improving correspondence matching on highly off-normal surfaces. A metric for quantifying the strength of correspondence matches is developed and implemented to recognize and reject weak correspondences, and a separate cross-check verification provides a final defense against erroneous matches. The core components of this phase based dense stereo algorithm are implemented and optimized in the Compute Uni ed Device Architecture (CUDA) parallel computation environment onboard an NVIDIA Graphics Processing Unit (GPU). Accurate dense stereo correspondence matching is performed on stereo image pairs at a rate of nearly 10Hz.
|
2 |
On precise three-dimensional environment modeling via UAV-based photogrammetric systems / Modélisation tridimensionnelle précise de l'environnement à l’aide des systèmes de photogrammétrie embarqués sur dronesShahbazi, Mozhdeh January 2016 (has links)
Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management.
UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results.
In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies.
Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed.
The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment. / Résumé : Les images acquises à l’aide d’aéronefs sans pilote (ASP) permettent de produire des données de résolutions spatiales et temporelles uniques pour la modélisation tridimensionnelle (3D). Les solutions développées pour ce secteur d’activité sont principalement basées sur des concepts de photogrammétrie et peuvent être identifiées comme des systèmes photogrammétriques embarqués sur aéronefs sans pilote (SP-ASP). Ils sont utilisés dans plusieurs applications environnementales où l’information géospatiale et visuelle est essentielle. Ces applications incluent notamment la gestion des ressources naturelles (ex. : agriculture de précision), la sécurité publique et militaire (ex. : gestion du trafic), les services d’ingénierie (ex. : inspection de bâtiments) et les services de santé publique (ex. : épidémiologie et gestion des risques).
Les SP-ASP peuvent être subdivisés en catégories selon les besoins en termes de précision et de résolution. En effet, dans certains cas, tel qu’en ingénierie, l’information sur l’environnement doit être de haute précision et de haute résolution (ex. : modélisation 3D avec une précision et une résolution inférieure à un centimètre). Pour d’autres applications, tel qu’en gestion de la faune sauvage, des niveaux de précision et de résolution moindres peut être suffisants (ex. : résolution de l’ordre de quelques décimètres). Cependant, même dans ce type d’applications les caractéristiques des SP-ASP devraient être prises en considération dans le développement des systèmes et dans leur utilisation, et ce, pour atteindre les résultats visés.
À cet égard, cette thèse présente une revue exhaustive des applications de l’imagerie aérienne acquise par ASP et de déterminer les challenges les plus courants. Cette étude a également permis d’établir les caractéristiques et exigences spécifiques des SP-ASP qui sont généralement ignorées ou partiellement discutées dans les études récentes.
En conséquence, la première partie de cette thèse traite des aspects méthodologiques et d’expérimentation de la mise en place d’un SP-ASP. Le système développé a été évalué pour la modélisation précise d’une gravière et utilisé pour réaliser des mesures de changement volumétrique. Cette application a été retenue pour deux raisons principales. Premièrement, ce type de milieu fournit un environnement difficile pour la modélisation, et ce, en termes de changement d’échelle, de changement de relief du terrain ainsi que la grande diversité de structures et de textures. Deuxièment, le suivi de mines à ciel ouvert exige un niveau de précision élevé, ce qui justifie les efforts déployés pour mettre au point un SP-ASP de haute précision. Les composantes matérielles du système consistent en un ASP à propulsion électrique de type hélicoptère, d’une caméra numérique à haute résolution ainsi qu’une station inertielle. La composante logicielle est composée de plusieurs programmes développés particulièrement pour calibrer la caméra et la plateforme, intégrer les systèmes, enregistrer les données, planifier les paramètres de vol et détecter automatiquement les points de contrôle au sol. Les détails complets du système sont abordés dans la thèse et des solutions sont proposées afin d’améliorer le système et la qualité des données photogrammétriques produites. La précision des résultats a été évaluée sous diverses conditions de cartographie, incluant le géoréférencement direct et indirect avec un nombre, une répartition et des types de points de contrôle variés. De plus, les effets de la configuration des images et la stabilité du réseau sur la précision de la modélisation ont été évalués.
La deuxième partie de la thèse porte sur l’amélioration des techniques de reconstruction éparse et dense. Les solutions proposées sont des alternatives aux techniques de photogrammétrie aérienne traditionnelle et adaptée aux caractéristiques particulières de l’imagerie acquise à basse altitude par ASP. Tout d’abord, une méthode robuste de correspondance éparse et d’estimation de la géométrie épipolaire a été développée. L’élément clé de cette méthode est sa capacité à gérer le pourcentage très élevé des valeurs aberrantes (erreurs entre les points correspondants) avec une efficacité de calcul remarquable en comparaison avec les techniques usuelles.
Ensuite, une stratégie d’ajustement de bloc basée sur l’intégration de pseudoobservations du modèle Gauss-Helmert a été proposée. Le principal avantage de cette stratégie consistait à contrôler les effets négatifs du réseau d’images instable et des images bruitées sur la précision de l’autocalibration. Une implémentation éparse de cette stratégie a aussi été réalisée, ce qui a permis de traiter des jeux de données contenant des millions de points de liaison. Finalement, les concepts de courbes intrinsèques ont été revisités pour l’appariement stéréo dense. La technique proposée pourrait atteindre un haut niveau de précision et d’efficacité en recherchant uniquement dans une petite portion de l’espace de recherche des disparités ainsi qu’en traitant les occlusions et les ambigüités d’appariement. Ces solutions photogrammétriques ont été largement testées à l’aide de données synthétiques, d’images à courte portée ainsi que celles acquises sur le site de la gravière. Le système a démontré sa capacité a modélisation dense de l’environnement avec une très haute exactitude en atteignant une précision 3D absolue de l’ordre de 11±7 mm.
|
3 |
Generation and Optimization of Local Shape Descriptors for Point Matching in 3-D SurfacesTaati, BABAK 01 September 2009 (has links)
We formulate Local Shape Descriptor selection for model-based object recognition in range data as an optimization problem and offer a platform that facilitates a solution. The goal of object recognition is to identify and localize objects of interest in an image. Recognition is often performed in three phases: point matching, where correspondences are established between points on the 3-D surfaces of the models and the range image; hypothesis generation, where rough alignments are found between the image and the visible models; and pose refinement, where the accuracy of the initial alignments is improved. The overall efficiency and reliability of a recognition system is highly influenced by the effectiveness of the point matching phase. Local Shape Descriptors are used for establishing point correspondences by way of encapsulating local shape, such that similarity between two descriptors indicates geometric similarity between their respective neighbourhoods.
We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods and allows for tuning descriptors to the geometry of specific models and to sensor characteristics. Our descriptors, termed as Variable-Dimensional Local Shape Descriptors, are constructed as multivariate observations of several local properties and are represented as histograms. The optimal set of properties, which maximizes the performance of a recognition system, depend on the geometry of the objects of interest and the noise characteristics of range image acquisition devices and is selected through pre-processing the models and sample training images. Experimental analysis confirms the superiority of optimized descriptors over generic ones in recognition tasks in LIDAR and dense stereo range images. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2009-09-01 11:07:32.084
|
4 |
The Stixel WorldPfeiffer, David 31 August 2012 (has links)
Die Stixel-Welt ist eine neuartige und vielseitig einsetzbare Zwischenrepräsentation zur effizienten Beschreibung dreidimensionaler Szenen. Heutige stereobasierte Sehsysteme ermöglichen die Bestimmung einer Tiefenmessung für nahezu jeden Bildpunkt in Echtzeit. Das erlaubt zum einen die Anwendung neuer leistungsfähiger Algorithmen, doch gleichzeitig steigt die zu verarbeitende Datenmenge und der dadurch notwendig werdende Aufwand massiv an. Gerade im Hinblick auf die limitierte Rechenleistung jener Systeme, wie sie in der videobasierten Fahrerassistenz zum Einsatz kommen, ist dies eine große Herausforderung. Um dieses Problem zu lösen, bietet die Stixel-Welt eine generische Abstraktion der Rohdaten des Sensors. Jeder Stixel repräsentiert individuell einen Teil eines Objektes im Raum und segmentiert so die Umgebung in Freiraum und Objekte. Die Arbeit stellt die notwendigen Verfahren vor, um die Stixel-Welt mittels dynamischer Programmierung in einem einzigen globalen Optimierungsschritt in Echtzeit zu extrahieren. Dieser Prozess wird durch eine Vielzahl unterschiedlicher Annahmen über unsere von Menschenhand geschaffene Umgebung gestützt. Darauf aufbauend wird ein Kalmanfilter-basiertes Verfahren zur präzisen Bewegungsschätzung anderer Objekte vorgestellt. Die Arbeit stellt umfangreiche Bewertungen der zu erwartenden Leistungsfähigkeit aller vorgestellten Verfahren an. Dafür kommen sowohl vergleichende Ansätze als auch diverse Referenzsensoren, wie beispielsweise LIDAR, RADAR oder hochpräzise Inertialmesssysteme, zur Anwendung. Die Stixel-Welt ist eine extrem kompakte Abstraktion der dreidimensionalen Umgebung und bietet gleichzeitig einfachsten Zugriff auf alle essentiellen Informationen der Szene. Infolge dieser Arbeit war es möglich, die Effizienz vieler auf der Stixel-Welt aufbauender Algorithmen deutlich zu verbessern. / The Stixel World is a novel and versatile medium-level representation to efficiently bridge the gap between pixel-based processing and high-level vision. Modern stereo matching schemes allow to obtain a depth measurement for almost every pixel of an image in real-time, thus allowing the application of new and powerful algorithms. However, it also results in a large amount of measurement data that has to be processed and evaluated. With respect to vision-based driver assistance, these algorithms are executed on highly integrated low-power processing units that leave no room for algorithms with an intense calculation effort. At the same time, the growing number of independently executed vision tasks asks for new concepts to manage the resulting system complexity. These challenges are tackled by introducing a pre-processing step to extract all required information in advance. Each Stixel approximates a part of an object along with its distance and height. The Stixel World is computed in a single unified optimization scheme. Strong use is made of physically motivated a priori knowledge about our man-made three-dimensional environment. Relying on dynamic programming guarantees to extract the globally optimal segmentation for the entire scenario. Kalman filtering techniques are used to precisely estimate the motion state of all tracked objects. Particular emphasis is put on a thorough performance evaluation. Different comparative strategies are followed which include LIDAR, RADAR, and IMU reference sensors, manually created ground truth data, and real-world tests. Altogether, the Stixel World is ideally suited to serve as the basic building block for today''s increasingly complex vision systems. It is an extremely compact abstraction of the actual world giving access to the most essential information about the current scenario. Thanks to this thesis, the efficiency of subsequently executed vision algorithms and applications has improved significantly.
|
Page generated in 0.074 seconds