• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 616
  • 171
  • 59
  • 56
  • 11
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1126
  • 1126
  • 1070
  • 213
  • 200
  • 174
  • 161
  • 158
  • 153
  • 147
  • 145
  • 136
  • 133
  • 118
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Semi-empirical and ab initio calculations of the optical properties of semiconductor superlattices

Botti, Silvana 01 February 2002 (has links) (PDF)
Dans un superréseau, le confinement modifie les états électroniques et la réduction de symétrie produit une forte anisotropie des propriétés optiques. Dans les super-réseaux GaAs/AlAs cette anisotropie, avec en plus les effets non-linéaires dans les propriétés optiques de GaAs, est un élément essentiel pour la réalisation des convertisseurs de fréquence. Dans mon travail de thèse, j'ai étudié le tenseur diélectrique statique et les spectres d'absorption des superréseaux (GaAs)p/(AlAs)p en fonction de leur période p. Le calcul de ces quantités a été commencé à l'aide de techniques semi-empiriques à l'Université de Pavia, sous la direction du Prof. L.C. Andreani. En particulier, J'ai développé un code pour appliquer la méthode «linear combination of bulk bands» au calcul des structures de bande et des fonctions diélectriques des héterostructures (superréseaux et nanofils). Dans la suite j'ai passé 12 mois au LSI sous la direction du Dr. Lucia Reining, pour réaliser des calculs ab-initio dans le cadre de la théorie de la fonctionnelle de la densité dépendante du temps. Nous avons réussi à bien décrire l'effet du confinement sur les spectres. L'anisotropie de la réponse diélectrique, mesurée par la biréfringence, est déterminée par les contributions du confinement et des champs locaux cristallins : si on tient compte des deux effets, on peut reproduire les données expérimentales. Les ultérieurs effets à N-corps ne donnent que des corrections quantitatives. La comparaison entre les résultats des calculs ab-initio et semi-empiriques, ainsi qu'avec les données de l'expérience, nous a permis de détecter les mécanismes physiques essentiels qui contribuent à l'anisotropie des propriétés optiques et, de plus, de déterminer les limites de validité de la méthode semi-empirique et de l'approche classique des milieux effectifs.
482

Local Structure of Hydrogen-Bonded Liquids

Cavalleri, Matteo January 2004 (has links)
<p>Ordinary yet unique, water is the substance on which life is based. Water seems, at first sight, to be a very simple molecule, consisting of two hydrogen atoms attached to one oxygen. Its small size belies the complexity of its action and its numerous anomalies, central to a broad class of important phenomena, ranging from global current circulation, terrestrial water and CO<sub>2</sub> cycles to corrosion and wetting. The explanation of this complex behavior comes from water's unique ability to form extensive three-dimensional networks of hydrogen-bonds, whose nature and structures, in spite of a great deal of efforts involving a plethora of experimental and theoretical techniques, still lacks a complete scientific understanding.</p><p>This thesis is devoted to the study of the local structure of hydrogen-bonded liquids, with a particular emphasis on water, taking advantage of a combination of core-level spectroscopies and density functional theory spectra calculations. X-ray absorption, in particular, is found to be sensitive to the local hydrogen-bond environment, thus offering a very promising tool for spectroscopic identification of specific structural configurations in water, alcohols and aqueous solutions. More specifically, the characteristic spectroscopic signature of the broken hydrogen-bond at the hydrogen side is used to analyze the structure of bulk water, leading to the finding that most molecules are arranged in two hydrogen-bond configurations, in contrast to the picture provided by molecular dynamics simulations. At the liquid-vapor interface, an interplay of surface sensitive measurements and theoretical calculations enables us to distinguish a new interfacial species in equilibrium with the gas. In a similar approach the cluster form of the excess proton in highly concentrated acid solutions and the different coordination of methanol at the vacuum interface and in the bulk can also be clearly identified.</p><p>Finally the ability of core-level spectroscopies, aided by sophisticated density functional theory calculations, to directly probe the valence electronic structure of a system is used to observe the nature of the interaction between water molecules and solvated ions in solution. Water around transition metal ions is found to interact with the solute via orbital mixing with the metal d-orbitals. The hydrogen-bond between water molecules is explained in terms of electrostatic interactions enhanced by charge rehybridization in which charge transfer between connecting molecules is shown to be fundamental.</p>
483

First-Principles calculations of Core-Level shifts in random metallic alloys: The Transition State Approach

Göransson (Asker), Christian January 2004 (has links)
<p>The overall aim of this thesis is to compare different methods for calculation of Core-Level shifts in metallic alloys. The methods compared are the Initial State model, the Complete screening and the Transition state model. Core-level shifts can give information of chemical bonding and about the electronic structure in solids.</p><p>The basic theory used is the so-called Density-Functional-Theory, in conjunction with the Local-Density Approximation and the Coherent-Potential- Approximation. The metallic alloys used are Silver-Palladium, Copper-Palladium, Copper-Gold and Copper-Platinum, all inface-centered-cubic configuration.</p><p>The complete screening- and the transition-state model are found to be in better agreement with experimental results than those calculated with the initial state model. This is mainly due to the fact that the two former models includes final-state effects, whereas the last one do not. The screening parameters within the Coherent-Potential approximation are also investigated. It is found that the Screened-Impurity Model can extend the validity of the Coherent-Potential-Approximation and increase it's accuracy.</p>
484

Alumina Thin Film Growth: Experiments and Modeling

Wallin, Erik January 2007 (has links)
<p>The work presented in this thesis deals with experimental and theoretical studies related to the growth of crystalline alumina thin films. Alumina, Al<sub>2</sub>O<sub>3</sub>, is a polymorphic material utilized in a variety of applications, e.g., in the form of thin films. Many of the possibilities of alumina, and the problems associated with thin film synthesis of the material, are due to the existence of a range of different crystalline phases. Controlling the formation of the desired phase and the transformations between the polymorphs is often difficult.</p><p>In the experimental part of this work, it was shown that the thermodynamically stable alpha phase, which normally is synthesized at substrate temperatures of around 1000 °C, can be grown using reactive sputtering at a substrate temperature of 500 °C by controlling the nucleation surface. This was done by predepositing a Cr<sub>2</sub>O<sub>3</sub> nucleation layer. Moreover, it was found that an additional requirement for the formation of the <em>α</em> phase is that the depositions are carried out at low enough total pressure and high enough oxygen partial pressure. Based on these observations, it was concluded that energetic bombardment, plausibly originating from energetic oxygen, is necessary for the formation of <em>α</em> alumina (in addition to the effect of the chromia nucleation layer). Further, the effects of impurities, especially residual water, on the growth of crystalline films were investigated by varying the partial pressure of water in the ultra high vacuum (UHV) chamber. Films deposited onto chromia nucleation layers exhibited a columnar structure and consisted of crystalline <em>α</em>-alumina if deposited under UHV conditions. However, as water to a partial pressure of 1x10<sup>-5</sup> Torr was introduced, the columnar growth was interrupted. Instead, a microstructure consisting of small, equiaxed grains was formed, and the gamma-alumina content was found to increase with increasing film thickness. When gamma-alumina was formed under UHV conditions, no effects of residual water on the phase formation was observed. Moreover, the H content was found to be low (< 1 at. %) in all films. Consequently, this shows that effects of residual gases during sputter deposition of oxides can be considerable, also in cases where the impurity incorporation in the films is found to be low.</p><p>In the modeling part of the thesis, density functional theory based computational studies of adsorption of Al, O, AlO, and O2 on different alpha-alumina (0001) surfaces have been performed. The results give possible reasons for the difficulties in growing the <em>α</em> phase at low temperatures through the identification of several metastable adsorption sites, and also provide insights related to the effects of hydrogen on alumina growth.</p> / Report code: LiU-TEK-LIC-2007:1.
485

Density Functional Theory in Computational Materials Science

Osorio Guillén, Jorge Mario January 2004 (has links)
<p>The present thesis is concerned to the application of first-principles self-consistent total-energy calculations within the density functional theory on different topics in materials science.</p><p>Crystallographic phase-transitions under high-pressure has been study for TiO2, FeI2, Fe3O4, Ti, the heavy alkali metals Cs and Rb, and C3N4. A new high-pressure polymorph of TiO2 has been discovered, this new polymorph has an orthorhombic OI (Pbca) crystal structure, which is predicted theoretically for the pressure range 50 to 100 GPa. Also, the crystal structures of Cs and Rb metals have been studied under high compressions. Our results confirm the recent high-pressure experimental observations of new complex crystal structures for the Cs-III and Rb-III phases. Thus, it is now certain that the famous isostructural phase transition in Cs is rather a new crystallographic phase transition.</p><p>The elastic properties of the new superconductor MgB2 and Al-doped MgB2 have been investigated. Values of all independent elastic constants (c11, c12, c13, c33, and c55) as well as bulk moduli in the a and c directions (Ba and Bc respectively) are predicted. Our analysis suggests that the high anisotropy of the calculated elastic moduli is a strong indication that MgB2 should be rather brittle. Al doping decreases the elastic anisotropy of MgB2 in the a and c directions, but, it will not change the brittle behaviour of the material considerably.</p><p>The three most relevant battery properties, namely average voltage, energy density and specific energy, as well as the electronic structure of the Li/LixMPO4 systems, where M is either Fe, Mn, or Co have been calculated. The mixing between Fe and Mn in these materials is also examined. Our calculated values for these properties are in good agreement with recent experimental values. Further insight is gained from the electronic density of states of these materials, through which conclusions about the physical properties of the various phases are made.</p><p>The electronic and magnetic properties of the dilute magnetic semiconductor Mn-doped ZnO has been calculated. We have found that for an Mn concentration of 5.6%, the ferromagnetic configuration is energetically stable in comparison to the antiferromgnetic one. A half-metallic electronic structure is calculated by the GGA approximation, where Mn ions are in a divalent state leading to a total magnetic moment of 5 μB per Mn atom.</p>
486

A Theoretical Treatise on the Electronic Structure of Designer Hard Materials

Hugosson, Håkan Wilhelm January 2001 (has links)
<p>The subject of the present thesis is theoretical first principles electronic structure calculations on designer hard materials such as the transition metal carbides and oxides. The theoretical investigations have been made in close collaboration with experimental research and have addressed both bulk electronic properties and surface electronic properties of the materials.</p><p>Among the bulk studies are investigations on the effects of substoichiometry on the relative phase stabilities and the electronic structure of several phases of MoC and the nature of the resulting vacancy peaks. The changes in phase stabilities and homo-geneity ranges in the group IV to VI transition metal carbides have been studied and explained, from calculations of the T=0 energies of formation and cohesive energies. The anomalous volume behavior and phase stabilities in substoichiometric TiC was studied including effects of local relaxations around the vacancy sites. The vacancy ordering problem in this compound was also studied by a combination of electronic structure calculations and statistical physics.</p><p>The studies of the surface electronic properties include research on the surface energies and work functions of the transition metal carbides and an investigation on the segregation of transition metal impurities on the TiC (100) surface.</p><p>Theoretical studies with the aim to facilitate the realization of novel designer hard materials were made, among these a survey of means of stabilizing potentially super-hard cubic RuO<sub>2</sub>, studying the effects of alloying, substoichiometry and lattice strains. A mechanism for enhancing hardness in the industrially important hard transition metal carbides and nitrides, from the discovery of multi-phase/polytypic alloys, has also been predicted from theoretical calculations.</p>
487

Designing and Tuning the Properties of Materials by Quantum Mechanical Calculations

Souza de Almeida, Jailton January 2006 (has links)
<p>In many materials, changes in chemical composition, pressure or temperature can induce metal to insulator transitions. It is recently observed in yttrium hydride, for example, changes from a shiny mirror (YH<sub>2</sub>) to a transparent window (YH<sub>3</sub>), which has important technological application in optical devices. We have tuned the above transition by choosing <i>pressure</i> instead of composition. Our predicted finding is confirmed by recent experiments and opens a new way to design optical switches.</p><p>The unique role that gold plays in society is to a large extent related to the fact that it is the most <i>noble</i> of all metals.We have studied the noble nature of gold by choosing <i>pressure</i> as tool. Our prediction shows that gold transforms from a face centered cubic to an hexagonal closed packed phase above 200 GPa whereas platinum, another noble metal, does not show any phase transition up to 500 GPa. This prediction has also been confirmed by experiments suggesting that platinum is more noble than gold.</p><p>The growing concern about climate change and fossil fuel availability, the direct conversion of solar irradiation into electricity appears to be an ideal alternative to conventional energy sources. Power generation by solar cells is a direct method of solar energy conversion. We report a new cubic phase of TiO<sub>2</sub> which can be stabilized at ambient conditions. This phase has an absorption three or four orders of magnitude larger than the conventional state-of-the-art solar cell based on anatase TiO<sub>2</sub>. Therefore, we are introducing a well established material with a new structure for future generation solar cells. The same effect is also observed in cubic SnO<sub>2</sub>.</p><p>Electronic and optical properties of other materials such as Be<sub>x</sub>Zn<sub>1-x</sub>Te, RuO<sub>2</sub> and IrO<sub>2</sub> are also studied in present thesis. In particular, for Be<sub>x</sub>Zn<sub>1-x</sub>Te, we have used composition as a tool to tune the optical properties.</p>
488

Computational Material Design : Diluted Magnetic Semiconductors for Spintronics

Huang, Lunmei January 2007 (has links)
<p>The present thesis deals with the application of <i>ab-initio</i> electronic structure calculations based on density functional theory for material design.</p><p>The correlation between magnetic properties and electronic structures has been investigated in detail for diluted magnetic semiconductors (DMS), which have promising application for spintronics devices. The point defects, acting as electron donor or electron acceptor, have been studied for their key role in mediating the long ranged ferromagnetic interaction between transition metal (TM) ions. The electron holes induced by electron acceptor are completely spin polarized in semiconductor and exhibit a very significant efficiency to the ferromagnetic coupling between TM ions. While the electron donor shows a negative effect to the ferromagnetism in the system. The common trend of magnetic interaction and electron charge transfer between TM ions and electron acceptors or electron donators have been outlined. The Coulomb correlation <i>U</i> of <i>d</i> electrons, which could change the energy levels of TM <i>d</i> band respective to the host semiconductor band, also shows a significant influence on the magnetic behavior in DMS. </p><p>The crystallography phase transition under high pressure has also been studied for the iron doped with light element, carbon. Our calculated results show that interstitial carbon defect has little effect on the iron's bcc to hcp phase transition under high pressure. The other carbon iron phases, like Fe<sub>3</sub>C, has also been studied in a wide pressure range.</p><p>We also present a first-principles description on the temperature dependence of elastic constant for solids. The total temperature effects are approximated as a sum of two separated parts, the thermal expansion contribution, which gives the normal linearly decreasing effect on the elastic constant with increasing temperature, and the electronic band contribution, which could lead anomalous behavior for thermal elastic constants.</p>
489

Spin Dynamics and Magnetic Multilayers

Skubic, Björn January 2007 (has links)
<p>Theoretical studies based on first-principles theory are presented for a number of different magnetic systems. The first part of the thesis concerns spin dynamics and the second part concerns properties of magnetic multilayers. The theoretical treatment is based on electronic structure calculations performed by means of density functional theory.</p><p>A method is developed for simulating atomistic spin dynamics at finite temperatures, which is based on solving the equations of motion for the atomic spins by means of Langevin dynamics. The method relies on a mapping of the interatomic exchange interactions from density functional theory to a Heisenberg Hamiltonian. Simulations are performed for various magnetic systems and processes beyond the reach of conventional micromagnetism. As an example, magnetization dynamics in the limit of large magnetic and anisotropy fields is explored. Moreover, the method is applied to studying the dynamics of systems with complex atomic order such as the diluted magnetic semiconductor MnGaAs and the spin glass alloy CuMn. The method is also applied to a Fe thin film and a Fe/Cr/Fe trilayer system, where the limits of ultrafast switching are explored. Current induced magnetization dynamics is investigated by calculating the current induced spin-transfer torque by means of density functional theory combined with the relaxation time approximation and semi-classical Boltzmann theory. The current induced torque is calculated for the helical spin-density waves in Er and fcc Fe, where the current is found to promote a rigid rotation of the magnetic order.</p><p>Properties of magnetic multilayers composed of magnetic and nonmagnetic layers are investigated by means of the Korringa-Kohn-Rostocker interface Green's function method. Multilayer properties such as magnetic moments, interlayer exchange coupling and ordering temperatures are calculated and compared with experiments, with focus on understanding the influence of interface quality. Moreover, the influence on the interlayer exchange coupling of alloying the nonmagnetic spacer layers with small amounts of a magnetic impurity is investigated.</p>
490

Electronic Transport in Strained Materials

Dziekan, Thomas January 2008 (has links)
<p>In this thesis the conductivity of strained materials has been investigated using density functional theory and a semiclassical transport theory based on the Boltzmann equation.</p><p>In transition metals trends are reproduced without adjustable parameters. The introduction of one temperature dependent cross section allowed the reproduction of resistivity trends between 10 and 1000K.</p><p>The effect of strain on transition metals in bcc and fcc structure was studied deforming the unit cell along the tetragonal deformation path. The anisotropy of the conductivity varied on wide range of the c/a-ratio. The orbitals at the Fermi level determined the principal behavior. Pairs of elements with permutated number of electrons and holes in the 4d band showed similar behavior. The concept of the tetragonal deformation was also applied on semiconductors.</p><p>The deformation of Vanadium in X/V superlattices (X=Cr,~Fe,~Mo) due to Hydrogen loading depends on the properties of X. It was found that counteracting effects due to the presence of Hydrogen influence the conductivity.</p><p>It is shown that a small magnetic moment of the V host reduces the hydrogen solubility. Depending on the magnitude of the tetragonal distortion of V, the hydrogen dissolution becomes favored for larger moments.</p><p>Finally, extra charge filling of the bandstructure of Cr and Mo decreases the Fermi velocity and increases the density of states at the Fermi energy.</p>

Page generated in 0.0881 seconds