• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 615
  • 171
  • 59
  • 56
  • 11
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1123
  • 1123
  • 1067
  • 213
  • 199
  • 174
  • 161
  • 158
  • 153
  • 146
  • 145
  • 135
  • 131
  • 117
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Reaction Mechanisms of Metalloenzymes and Synthetic Model Complexes Activating Dioxygen : A Computational study

Georgiev, Valentin January 2009 (has links)
Quantum chemistry has nowadays become a powerful and efficient tool that can be successfully used for studies of biosystems. It is therefore possibleto model the enzyme active-site and the reactions undergoing into it, as well as obtaining quite accurate energetic profiles. Important conclusions can be drawn from such profiles about the  plausibility of different putative mechanisms. Density Functional Theory is used in the present thesis for investigation of the catalytic mechanism of dioxygenase metallo-enzymes and synthetic model complexes. Three enzymes were studied – Homoprotocatechuate 2,3-dioxygenase isolated from Brevibacterium fuscum (Bf 2,3-HPCD), Manganese-Dependent Homoprotocatechuate 2,3-Dioxygenase (MndD) and Homogentisate Dioxygenase (HGD). Models consisting of 55 to 208 atoms have been built from X-ray crystal structures and used in the calculations. The computed energies were put in energy curves and were used for estimation of the feasibility of the suggested reaction mechanisms. A non-heme [(L4Me4)Fe(III)]+3 complex that mimics the reactivity of intradiol dioxygenases, and a heme [T(o-Cl)PPFe] complex catalyzing the stepwise oxidation of cyclohexane to adipic acid, were also studied. For the enzymes and the non-heme biomimetic complex the reaction was found to follow a mechanism that was previously suggested for extradiol and intradiol dioxygenases – ordered substrates binding and formation of peroxo species, which further undergoes homolytic O-O bond cleavage. Different reaction steps appear to be rate limiting in the particular cases: proton transfer from the substrate to the peroxide in Bf 2,3-HPCD, the formation of the peroxo bridge in HGD and the biomimetic complex, and notably, spin transition in MndD. The catalytic oxidation of cyclohexane to adipic acid in the presence of molecular oxygen as oxidant was studied, a reaction of great importance for the chemical industry. Reaction mechanism is suggested, involving several consecutive oxidative steps. The highest calculated enthalpy of activation is 17.8 kcal/mol for the second oxidative step. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: In progress, Paper 5: In progress
502

Density Functional Theory Applied to Materials for Spintronics

Iusan, Diana Mihaela January 2010 (has links)
The properties of dilute magnetic semiconductors have been studied by combined ab initio, Monte Carlo, and experimental techniques. This class of materials could be very important for future spintronic devices, that offer enriched functionality by making use of both the spin and the charge of the electrons. The main part of the thesis concerns the transition metal doped ZnO. The role of defects on the magnetic interactions in Mn-doped ZnO was investigated. In the presence of acceptor defects such as zinc vacancies and oxygen substitution by nitrogen, the magnetic interactions are ferromagnetic. For dilute concentrations of Mn (~ 5%) the ordering temperature of the system is low, due to the short ranged character of the exchange interactions and disorder effects. The clustering tendency of the Co atoms in a ZnO matrix was also studied. The electronic structure, and in turn the magnetic interactions among the Co atoms, is strongly dependent on the exchange-correlation functional used. It is found that Co impurities tend to form nanoclusters and that the interactions among these atoms are antiferromagnetic within the local spin density approximation + Hubbard U approach. The electronic structure, as well as the chemical and magnetic interactions in Co and (Co,Al)-doped ZnO, was investigated by joined experimental and theoretical techniques. For a good agreement between the two, approximations beyond the local density approximation must be used. It is found that the Co atoms prefer to cluster within the semiconducting matrix, a tendency which is increased with Al co-doping. We envision that it is best to describe the system as superparamagnetic due to the formation of  Co nanoclusters within which the interactions are antiferromagnetic. The magnetic anisotropy and evolution of magnetic domains in Fe81Ni19/Co(001) superlattices were investigated both experimentally, as well as using model spin dynamics. A magnetic reorientation transition was found.
503

A Theoretical Perspective on the Chemical Bonding and Structure of Transition Metal Carbides and Multilayers

Råsander, Mikael January 2010 (has links)
The present thesis deals with a theoretical description of issues regarding chemical bonding, structure and stability of transition metal carbides and multilayered structures. First principles density functional theory has been used extensively to investigate the properties of alloyed solutions of transition metal carbides. Joint theoretical and experimental investigations have shown that there is a driving force for carbon to be released from these ternary carbide systems as a response to the alloying. This release of carbon was shown to yield favorable lubricating properties in the case of alloyed solutions of Ti-Al-C, that were not present in the case of pure TiC, a property that can be used to design new materials that combine high hardness with favorable tribological properties. From calculations of the activation energy of C diffusion in the vicinity of substitutional transition metal impurities (M) in TiC, it is found that the mobility of C atoms is increased due to the presence of the impurities. The lowering of the activation energy barriers suggests that the mobility of C in alloyed solutions of Ti-M-C is increased and will be more pronounced at lower temperature than for C diffusion in TiC. The magnetic properties of alloyed solutions of Ti-Fe-C has been investigated using both theory and experiment. Theoretical calculations reveal that the magnetic moment and the critical temperature increase when increasing the Fe content as well as when lowering the C content in the system. Furthermore, the magnetic exchange parameters between Fe atoms were found to clearly reflect changes in the chemical bonding when varying the C content. Experimentally the magnetic properties were found to be rather substantial. Furthermore, the magnetic properties changes upon annealing due to the formation of Fe-rich and Fe-poor regions in the system. After long enough annealing times precipitates of α-Fe are formed which is consistent with theoretical predictions. The interaction between TiC(111) surfaces and C in the form of graphite has also been investigated. For these systems it was found that graphite was rather strongly bonded to the carbide surface and that the atomic as well as electronic structure at the interface depend on the termination of the carbide surface. This research was motivated by the recent interest in graphene, but also to investigate how carbide grains interacts with C when dispersed in a carbon matrix. A model for the calculation of structural parameters in multilayer structures has been presented and evaluated. The model is based on classical elasticity theory and uses the elastic constants of the materials constituting the multilayer as the only input.
504

First-Principles calculations of Core-Level shifts in random metallic alloys: The Transition State Approach

Göransson (Asker), Christian January 2004 (has links)
The overall aim of this thesis is to compare different methods for calculation of Core-Level shifts in metallic alloys. The methods compared are the Initial State model, the Complete screening and the Transition state model. Core-level shifts can give information of chemical bonding and about the electronic structure in solids. The basic theory used is the so-called Density-Functional-Theory, in conjunction with the Local-Density Approximation and the Coherent-Potential- Approximation. The metallic alloys used are Silver-Palladium, Copper-Palladium, Copper-Gold and Copper-Platinum, all inface-centered-cubic configuration. The complete screening- and the transition-state model are found to be in better agreement with experimental results than those calculated with the initial state model. This is mainly due to the fact that the two former models includes final-state effects, whereas the last one do not. The screening parameters within the Coherent-Potential approximation are also investigated. It is found that the Screened-Impurity Model can extend the validity of the Coherent-Potential-Approximation and increase it's accuracy.
505

First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design

Ismail, Arif 07 September 2011 (has links)
As the demand for clean and renewable energy sources continues to grow, much attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low operating temperature. However, the components of SOFCs must still be improved before commercialization can be reached. Of particular interest is the solid electrolyte, which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC) is the electrolyte of choice in most SOFCs today, due mostly to its high ionic conductivity at low temperatures. However, the underlying principles that contribute to high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in SDC which contribute to its favourable performance in the fuel cell. Unfortunately, information as basic as the structure of SDC has not yet been found due to the difficulty in experimentally characterizing and computationally modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1% concentration used in fuel cells, one must investigate 194 trillion configurations, due to the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell. As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm (GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material. With the GA, we investigate the structure of SDC for the first time at the DFT+U level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDCagree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure of SDC found in this work provides a basis for developing better solid electrolytes, which is of significant scientific and technological interest. Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our simulations the magnetization of SDC, which was found by experiment. Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
506

Structure-function relationships in cellular copper control

Zhang, Limei 09 June 2009
X-ray absorption spectroscopy and computational chemistry have been used to probe the structure of biomolecules involved in cellular copper homeostasis. X-ray absorption spectroscopy shows that copper chaperones involved in cytochrome c oxidase assembly bind Cu(I) with trigonal coordination environments in poly-copper thiolate clusters, but the number of coppers in these clusters remains unclear. X-ray absorption spectroscopy of the metal-sensing transcription factor-1 from Drosophila melanogaster and metallothionein from Saccharomyces cerevisiae with stoichiometries of four or less shows a tetracopper cluster in an all-or-none manner in these molecules. These results suggest that cooperative binding of copper to form tetracopper clusters may be a common mechanism employed by copper control molecules. The active site structure of the novel copper-sensitive repressor CsoR in Mycobacterium tuberculosis binds copper in a trigonal coordination geometry with two sulfur and one nitrogen donors according to X-ray absorption spectroscopy results. Molecular dynamics simulations of both apo- and Cu-bound CsoR reveal local conformational changes in CsoR upon copper binding, which suggests multiple possible mechanisms of Cu-dependent transcriptional regulation by CsoR. Finally, X-ray absorption spectroscopy and X-ray fluorescence imaging have been used to understand the molecular basis of a promisng new treatment for Wilsons disease (a genetic disorder of Cu homeostasis) using tetrathiomolybdate. Overall, the results presented provide an essential structural basis for understanding copper homeostasis in living cells.
507

Electronic structure of DNA and related biomolecules

MacNaughton, Janay Brianne 09 July 2012
<p>The electronic structures of the nucleobases, 5-fluorouracil compounds, DNA, metallic DNA, and samples of boron nitride are investigated. Soft X-ray absorption (XAS) and emission (XES) spectroscopy using synchrotron radiation are used to probe the unoccupied and occupied partial densities of electronic states, respectively. Hartree-Fock and density functional theory calculations have been included to compare with experimental results.</p> <p>A systematic approach to understanding the complicated electronic structure of DNA and metallic DNA systems is to initially examine smaller components. Detailed experiment and theory for both absorption and emission spectroscopy was. performed for the nucleobases and 5-fluorouracil compounds. Main transitions in the XAS and XES spectra are identified. X-ray spectroscopy has proven to be extremely sensitive to changes in the environment of various DNA samples. The local chemical environment plays an important role in determining the electronic structure of DNA. In agreement with previous results indicating metallic DNA is more efficient at the transfer of electrons than DNA, XES measurements reveal that there are a higher number of charge carriers in the metallic system. Both liquid and powder samples of (Ni)·M-DNA are found to have a high spin Ni(II) configuration. The drying process significantly alters the electronic structure of the metallic DNA sample. A comparison of high quality single crystals and thin films of boron nitride found that differences between the electronic structures of the nanocrystalline films and the single crystal samples exist, and the surface roughness of the substrate plays an important role in determining the structure of the resulting deposited film.</p>
508

Electronic structure of DNA and related biomolecules

MacNaughton, Janay Brianne 09 July 2012 (has links)
<p>The electronic structures of the nucleobases, 5-fluorouracil compounds, DNA, metallic DNA, and samples of boron nitride are investigated. Soft X-ray absorption (XAS) and emission (XES) spectroscopy using synchrotron radiation are used to probe the unoccupied and occupied partial densities of electronic states, respectively. Hartree-Fock and density functional theory calculations have been included to compare with experimental results.</p> <p>A systematic approach to understanding the complicated electronic structure of DNA and metallic DNA systems is to initially examine smaller components. Detailed experiment and theory for both absorption and emission spectroscopy was. performed for the nucleobases and 5-fluorouracil compounds. Main transitions in the XAS and XES spectra are identified. X-ray spectroscopy has proven to be extremely sensitive to changes in the environment of various DNA samples. The local chemical environment plays an important role in determining the electronic structure of DNA. In agreement with previous results indicating metallic DNA is more efficient at the transfer of electrons than DNA, XES measurements reveal that there are a higher number of charge carriers in the metallic system. Both liquid and powder samples of (Ni)·M-DNA are found to have a high spin Ni(II) configuration. The drying process significantly alters the electronic structure of the metallic DNA sample. A comparison of high quality single crystals and thin films of boron nitride found that differences between the electronic structures of the nanocrystalline films and the single crystal samples exist, and the surface roughness of the substrate plays an important role in determining the structure of the resulting deposited film.</p>
509

First Principles and Genetic Algorithm Studies of Lanthanide Metal Oxides for Optimal Fuel Cell Electrolyte Design

Ismail, Arif 07 September 2011 (has links)
As the demand for clean and renewable energy sources continues to grow, much attention has been given to solid oxide fuel cells (SOFCs) due to their efficiency and low operating temperature. However, the components of SOFCs must still be improved before commercialization can be reached. Of particular interest is the solid electrolyte, which conducts oxygen ions from the cathode to the anode. Samarium-doped ceria (SDC) is the electrolyte of choice in most SOFCs today, due mostly to its high ionic conductivity at low temperatures. However, the underlying principles that contribute to high ionic conductivity in doped ceria remain unknown, and so it is difficult to improve upon the design of SOFCs. This thesis focuses on identifying the atomistic interactions in SDC which contribute to its favourable performance in the fuel cell. Unfortunately, information as basic as the structure of SDC has not yet been found due to the difficulty in experimentally characterizing and computationally modelling the system. For instance, to evaluate 10.3% SDC, which is close to the 11.1% concentration used in fuel cells, one must investigate 194 trillion configurations, due to the numerous ways of arranging the Sm ions and oxygen vacancies in the simulation cell. As an exhaustive search method is clearly unfeasible, we develop a genetic algorithm (GA) to search the vast potential energy surface for the low-energy configurations, which will be most prevalent in the real material. With the GA, we investigate the structure of SDC for the first time at the DFT+U level of theory. Importantly, we find key differences in our results from prior calculations of this system which used less accurate methods, which demonstrate the importance of accurately modelling the system. Overall, our simulation results of the structure of SDCagree with experimental measurements. We identify the structural significance of defects in the doped ceria lattice which contribute to oxygen ion conductivity. Thus, the structure of SDC found in this work provides a basis for developing better solid electrolytes, which is of significant scientific and technological interest. Following the structure search, we perform an investigation of the electronic properties of SDC, to understand more about the material. Notably, we compare our calculated density of states plot to XPS measurements of pure and reduced SDC. This allows us to parameterize the Hubbard (U) term for Sm, which had not yet been done. Importantly, the DFT+U treatment of the Sm ions also allowed us to observe in our simulations the magnetization of SDC, which was found by experiment. Finally, we also study the SDC surface, with an emphasis on its structural similarities to the bulk. Knowledge of the surface structure is important to be able to understand how fuel oxidation occurs in the fuel cell, as many reaction mechanisms occur on the surface of this porous material. The groundwork for such mechanistic studies is provided in this thesis.
510

Electronic Transport in Strained Materials

Dziekan, Thomas January 2008 (has links)
In this thesis the conductivity of strained materials has been investigated using density functional theory and a semiclassical transport theory based on the Boltzmann equation. In transition metals trends are reproduced without adjustable parameters. The introduction of one temperature dependent cross section allowed the reproduction of resistivity trends between 10 and 1000K. The effect of strain on transition metals in bcc and fcc structure was studied deforming the unit cell along the tetragonal deformation path. The anisotropy of the conductivity varied on wide range of the c/a-ratio. The orbitals at the Fermi level determined the principal behavior. Pairs of elements with permutated number of electrons and holes in the 4d band showed similar behavior. The concept of the tetragonal deformation was also applied on semiconductors. The deformation of Vanadium in X/V superlattices (X=Cr,~Fe,~Mo) due to Hydrogen loading depends on the properties of X. It was found that counteracting effects due to the presence of Hydrogen influence the conductivity. It is shown that a small magnetic moment of the V host reduces the hydrogen solubility. Depending on the magnitude of the tetragonal distortion of V, the hydrogen dissolution becomes favored for larger moments. Finally, extra charge filling of the bandstructure of Cr and Mo decreases the Fermi velocity and increases the density of states at the Fermi energy.

Page generated in 0.1068 seconds