• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 30
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 65
  • 46
  • 41
  • 33
  • 20
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Effect of Liquid Hot Filling Temperature on Blow-Molded HDPE Bottle Properties

Hudson, Benjamin S. 04 December 2008 (has links) (PDF)
The occurrence of deformation in plastic bottles is a common problem in the bottling industry where bottles are blow molded, hot filled at high temperatures and sealed. Plastics have unique properties that make it difficult to predict when and why such changes may occur. The root cause of such deformation is unknown by many bottle producers and recent attempts have been made to minimize the occurrence of such defects. The purpose of this research is to determine which variables involved in the bottle production process influence bottle shape. Earlier variables that were tested included both blow molding resin and total bottle sidewall thickness. The result of changing these variables did not create a decrease in defects. The use of an Ishikawa fishbone diagram identified hot filling temperature a major variable that influences final bottle shape. This research summarizes the results of a series of tests that were developed to observe the effect of hot filling temperature on final bottle shape. A positive correlation between sidewall deflection and liquid hot filling temperature was observed. A series of tensile tests were also developed to analyze the strength of various regions of a blow molded bottle. An early Pareto Analysis determined that the parting line is more susceptible to defects than any other region of the bottle. This weakness was confirmed after the tensile tests proved that there is a statistically significant difference between measurements on the sidewall and parting line (pvalue < .001). The results of this thesis highlight the consequences of arbitrarily choosing a filling temperature with little understanding of the bottle's strength at high temperatures. Plastic bottle producers and hot filling companies should unite to determine the appropriate hot filling temperature before bottles are molded and filled.
12

Lifetime Estimation for Ductile Failure in Semicrystalline Polymer Pipes

Taherzadehboroujeni, Mehrzad 19 July 2019 (has links)
The aim of this study is to develop a combined experimental and analytical framework for accelerated lifetime estimates of semi-crystalline plastic pipes which is sensitive to changes in structure, orientation, and morphology introduced by processing conditions. To accomplish this task, high-density polyethylene (HDPE) is chosen as the exemplary base material. As a new accelerated test protocol, several characterization tests were planned and conducted on as-manufactured HDPE pipe segments. Custom fixtures are designed and developed to admit uniaxial characterization tests. The yield behavior of the material was modeled using two hydrostatic pressure modified Eyring equations in parallel to describe the characterization test data collected in axial tension and compression. Subsequently, creep rupture failure of the pipes under hydrostatic pressure is predicted using the model. The model predictions are validated using the experimental creep rupture failure data collected from internal pressurization of pipes using a custom-designed, fully automatic test system. The results indicate that the method allows the prediction of pipe service lifetimes in excess of 50 years using experiments conducted over approximately 10 days instead of the traditional 13 months. The analytical model is joined with a commercial finite element package to allow simulations including different thermal-mechanical loading conditions as well as complicated geometries. The numerical model is validated using the characterization test data at different temperatures and deformation rates. The results suggest that the long-term performance of the pipe is dominated by the plastic behavior of the material and its viscoelastic response is found to play an insignificant role in this manner. Because of the potential role of residual stresses on the long-term behavior, the residual stress across the wall thickness is measured for three geometrically different HDPE pipes. As expected, the magnitude of tensile and compressive residual stresses are found to be greater in pipes with thicker walls. The effect of the residual stress on the long-term performance of the pipes is investigated by including the residual stress measurements into the numerical simulations. The residual stress slightly accelerates the failure process; however, for the pipe geometries examined, this acceleration is insignificant. / Doctor of Philosophy / The use of plastic pipes to carry liquids and gases has greatly increased in recent decades, primarily because of their moderate costs, long service lifetimes, and corrosion resistance compared with materials such as corrugated steel and ductile iron. Before these pipes can be effectively used, however, designers need the capability to quickly predict the service lifetime so that they can choose the best plastic material and pipe design for a specific application. This capability also allows manufacturers to modify materials to improve performance. The aim of this study is to develop a combination of experiments and models to quickly predict the service lifetime of plastic pipes. High-density polyethylene (HDPE) was chosen as the plastic material on which the model was developed. Several characterization tests are planned and conducted on as-manufactured HDPE pipe segments. The yielding behavior of the material is modeled and the lifetime predictions are evaluated. The predictions are validated by experimental data captured during pipe burst tests conducted in the lab. The results indicate that the method allows the accurate prediction of pipe service lifetimes in excess of 50 years using experiments conducted over approximately 10 days instead of the traditional 13 months, resulting in significant savings in time (and consequently costs) and making it possible to introduce new materials into production more rapidly.
13

Characterization of the viscoelastic and flow properties of High Density Polyethylene Resins for Pipes in the Solid and Melt State

Pretelt Caceres, Juan Antonio 15 January 2020 (has links)
The frequent use of high-density polyethylene pipes over the last decades has been possible because these pipes are lightweight, corrosion resistant, unlikely to have leaks, and are low cost. The chain structure of the polymer, the extrusion and cooling conditions, the resulting morphology and the ambient conditions all play an important role in the pipe's performance. A new generation of high density polyethylene resins has improved the performance of pipes, but brought new challenges to their testing and characterization. There is a need to understand the rheological behavior of the resins, their processing, and their associated properties in a finished pipe. The rheological behavior of the resins was studied to characterize the effect of high molecular weight tails in a bimodal molecular weight distribution. The use of cone-and-plate and parallel-plate geometries in a rheometer provided simple flow that characterized the steady and dynamical response of the polymer melts. The rheological measurements detected differences in the resins: the resin with higher molecular weight tail showed increased zero shear-rate viscosity, a much slower relaxation of stresses and a resin that more readily deviates from linear viscoelastic behavior. The rheology of the resins allowed modeling their flow through different extrusion dies. The flow channels for pipe dies are thick, so velocities and shear rates are low. Using a different die had a larger impact in shear rates and stresses compared to using different resins. The resin with higher molecular weight shows much higher shear stresses for the same die and temperature, which makes processing harder. The flow of a fluid through a pipe causes constant stress, which at long enough times is one the reasons for pipe failure. Tests that characterize the service lifetime of pipes take long times and are expensive. Dynamical mechanical analysis allows characterizing the viscoelastic properties of the pipe and creep testing confirms that shift factors work for viscoelastic properties measured inde-pendently. For the characterized pipes, one hour of testing at 80 °C is equivalent to a month of test-ing at 25 °C. This works characterizes pipes made from two resins and two different dies. The meas-urements showed that the pipes were statistically the same. / Doctor of Philosophy / The use of high-density polyethylene pipes has thrived over the last decades. This has been possible because these pipes are lightweight, corrosion resistant, unlikely to have leaks, and are low cost. The structure of the polymer and the manufacturing process both affect the pipe's performance. A new generation of high density polyethylene resins has improved the performance of the pipes, but brought new challenges to their testing and characterization. There is a need to understand the flow characteristics of the resins and their properties as a finished pipe. The flow behavior of the polymers in simple geometries gave insights into the polymer's structure. A higher molecular weight resin showed increased resistance to flow and deviated from ideal behavior more readily. These flow characteristics let one model certain aspects of the manufacturing process. Pipe manufacturing is a slow process because of the high resistance to flow of the polymer. Changing the processing equipment, and to a minor degree changing the resins, had an important impact in the manufacturing process. The tests that characterize the service lifetime of pipes take long times and are expensive. When pipes have fluids flowing at high pressures, it takes decades for them to fail. There are viscoelastic tests that allow much quicker characterization of pipes and help predict their long term behavior. This works characterizes pipes made from two resins and two different dies. This works characterizes pipes made from two resins and two different dies. The measurements showed that the pipes were statistically the same.
14

Blendas de rejeitos pós-industriais de filmes multicamadas de polietileno de baixa densidade (PEBD) e poliamida (PA6) / Blends of post-industrial waste from low density polyethylene multilayer films (LDPE) and polyamide (PA6)

Moreno, Diego David Pinzon 11 May 2015 (has links)
A reciclagem de resíduos sólidos tem se tornado cada vez mais relevante devido a alguns fatores como os impactos ambientais ocasionados com o seu descarte inadequado, ao rigor crescente de legislação específica e ao custo elevado para o gerenciamento apropriado destes resíduos. Na área de materiais poliméricos, os resíduos poliméricos podem ser de origem pósconsumo ou pós-industrial. Alguns rejeitos industriais poliméricos possuem características estruturais ou químicas que impossibilitam o seu reaproveitamento direto no processo que o gerou, como é o caso filmes multicamadas de polietileno de baixa densidade (PEBD) com poliamida 6 (PA6), usados para a produção de embalagens. O presente trabalho teve como objetivo central o reaproveitamento de rejeitos de filmes multicamadas de PEBD com PA6 na forma de blendas recicladas destes polímeros, fazendo uso de agente compatibilizante e variação na composição das blendas com a incorporação de PA6 virgem, a fim de produzir materiais com propriedades adequadas e custo compatível para a aplicação comercial. O desenvolvimento experimental foi dividido em três etapas que consistiram na avaliação do teor mais adequado de agente compatibilizante de fases da blenda (etapa 1), na determinação do comportamento das propriedades das blendas não compatibilizadas em diferentes composições de rejeito do filme multicamada e PA6 virgem (etapa 2) e na associação do uso de compatibilizante com variação das composições das blendas (etapa 3). A partir da execução experimental das atividades das etapas 1 e 2 do trabalho foi possível determinar que o teor de 2,5% do agente compatibilizante polietileno grafitizado com anidrido maleico (PEg- AM) é o mais adequado para compatibilizar as blendas poliméricas e que a maioria das suas propriedades das blendas apresentam um comportamento próximo ao aditivo linear, que leva em consideração somente as propriedades iniciais dos componentes poliméricos PEBD e PA6 isolados. Os diversos materiais gerados no desenvolvimento desta pesquisa apresentam desempenho de propriedades e custo de produção variáveis em função do teor de PA6 nas blendas, que podem viabilizar o uso deste material reciclado em aplicações comerciais específicas. / Recycling of solid waste has been an important issue due to some factors such as environmental damage caused by inappropriate discards, increasing rigor of specific legislation and high cost to the appropriate management of these waste. Polymeric waste can be originated from post-consume or post-industrial sources. Some polymeric waste have chemical or structural characteristics that difficult their direct reuse in the same productive process such as multilayer film of low density polyethylene (LDPE) and polyamide 6 (PA6), which are used for packing. The aim of this work has been the study the mechanical recycling of multilayer films of PEBD and PA6 as PEBD/PA6 blends with adequate properties and compatible cost for commercial applications. The experimental development has been performed in 3 steps, which correspond to evaluation of more adequate content of compatibilizer agent for interface of blends (step 1), determination of behavior of the properties of blends without compatibilizer agent on different compositions of waste form multilayer films (step 2) and production of blends with compatibilizer agent graphitized polyethylene with maleic anhydride (PE-g-MA) (step 3). Has been verified that the content of 2.5% of PE-g-MA is more adequate to be used in the compatibilization of recycled PEBD/PA blends and that the performance of the blends dependents of the content of PA6 in the material. The recycled materials have potential for commercial applications.
15

Influência das ceras orgânicas nas propriedades de filmes tubulares de PEBD

Euzébio Junior, Silvio Hendez January 2017 (has links)
As poliolefinas, em especial os polietilenos (PE) são materiais poliméricos muito utilizados para a produção de filmes tubulares, sendo um dos materiais mais amplamente empregado na indústria de embalagens flexíveis. Dentre os diversos PE industriais, o polietileno de baixa densidade (PEBD) apresenta propriedades reológicas únicas em comparação aos PE lineares e os de alta densidade. A alta viscosidade e as numerosas ramificações longas encontradas neste polímero influenciam na redução da produtividade quando processados. Aditivos das mais variadas composições são adicionados ao polietileno durante o processo de extrusão tubular a fim de melhorar suas propriedades. Um dos aditivos mais empregados para facilitar o fluxo do fundido para processamento de filmes são as ceras sintéticas, sendo a mais usada a de polietileno oxidado (CP). Na procura de alternativas de cera de fonte orgânica e/ou de fonte natural, o objetivo deste trabalho é avaliar a influência do tipo e teor de cera na processabilidade e propriedades finais de filmes tubulares de PEBD. Foram usados 3 tipos de ceras: CP (cera de polietileno), a carnaúba (CC) e o monoestearato de glicerol (CM), sendo processadas 4 formulações de PEBD/cera nas proporções mássicas de 99,5/0,5; 99/1; 98/2 e 96/4 m/m com os três tipos de cera e comparados com o PEBD sem cera. Os filmes foram caracterizados através de ensaios físicos, ópticos, químicos, térmicos, reológicos e mecânicos. Propriedades ópticas como o brilho e opacidade foram alteradas pela adição das ceras pois um aumento na concentração das ceras aumenta o grau de cristalinidade dos filmes. A cera de carnaúba apresentou amarelamento nos filmes produzidos com maiores concentrações. Resultados deste estudo mostraram que o uso da cera sintética, CP e da natural de carnaúba, aumentam a produtividade do filme tubular de PEBD, sendo o teor ótimo de 1% de cera, sem ter influência significativa na espessura e largura do filme tubular. O uso de agentes de fluxo alternativos de natureza orgânica é viável pois obtiveram resultados similares e superiores ao padrão nos filmes testados. / Polyolefins, especially polyethylenes (PE) are widely used polymeric materials for the production of tubular films, being one of the most widely used materials in the flexible packaging industry. Among the various industrial PE, low density polyethylene (LDPE) has unique rheological properties compared to linear and high density PE. The high viscosity and the numerous long branches found in this polymer influence the reduction of productivity when processed. Additives of the most varied compositions are added to the polyethylene during the tubular extrusion process in order to improve their properties. One of the most used additives to facilitate the flux of melt for film processing is synthetic waxes, the most used being oxidized polyethylene (CP). In the search for organic and / or natural source wax alternatives, the objective of this work is to evaluate the influence of the type and content of wax on the processability and final properties of tubular films of LDPE. Three types of waxes were used: CP (polyethylene wax), carnauba (CC) and glycerol monostearate (CM), and 4 formulations of LDPE / wax were processed in mass proportions of 99.5 / 0.5; 99/1; 98/2 and 96/4 m / m with the three types of wax and compared with LDPE without wax. The films were characterized by physical, optical, chemical, thermal, rheological and mechanical tests. Optical properties such as brightness and opacity are altered by the addition of waxes as an increase in the concentration of the waxes increases the degree of crystallinity of the films. Carnauba wax shows a yellowing in the films produced with higher concentrations. Results of this study showed that the use of synthetic wax, CP and natural carnauba, increase the productivity of the tubular film of LDPE, being the optimal content of 1% of wax, without having a significant influence on the thickness and width of the tubular film. The use of alternative flow agents of organic nature is feasible because they obtained similar and superior results to the standard in the films tested.
16

Effects of welding parameters on the integrity and structure of HDPE pipe butt fusion welds

Shaheer, Muhammad January 2017 (has links)
Butt fusion welding process is an extensively used method of joining for high density polyethylene (HDPE) pipe. With the increasing number of HDPE resin and pipe manufacturers and the diversity of industries utilising HDPE pipes, a wide range of different standards have evolved to specify the butt fusion welding parameters with inspection and testing methods, to maintain quality and structural integrity of welds. There is a lack of understanding and cohesion in these standards for the selection of welding parameters; effectiveness, accuracy, and selection of the test methods and; correlation of the mechanical properties to the micro and macro joint structure. The common standards (WIS 4-32-08, DVS 2207-1, ASTM F2620, and ISO 21307) for butt fusion welding were used to derive the six welding procedures. A total of 48 welds were produced using 180 mm outer diameter SDR 11 HDPE pipe manufactured from BorSafe™ HE3490-LS black bimodal PE100 resin. Three short term coupon mechanical tests were conducted. The waisted tensile test was able to differentiate the quality of welds using the energy to break parameter. The tensile impact test due to specimen geometry caused the failure to occur in the parent material. The guided side bend specimen geometry proved to be too ductile to be able to cause failures. A statistical t-test was used to analyse the results of the short term mechanical tests. The circumferential positon of the test specimen had no impact on their performance. Finite element analysis (FEA) study was conducted for the long term whole pipe tensile creep rupture (WPTCR) test to find the minimum length of pipe required for testing based on pipe geometry parameters of outer diameter and SDR. Macrographs of the weld beads supplemented with heat treatment were used to derive several weld bead parameters. The FEA modelling of the weld bead parameters identified the length to be a key parameter and provided insight into the relationship between the geometry of the weld beads and the stresses in the weld region. The realistic bead geometry digitised using the macrographs contributed a 30% increase in pipe wall stress due to the stress concentration effect of the notches formed between the weld beads and the pipe wall. The circumferential position of the weld bead had no impact on the pipe wall stresses in a similar manner to the results of the different mechanical tests. IV Nanoindentation (NI) and differential scanning calorimetry (DSC) techniques were used to study the weld microstructure and variation of mechanical properties across the weld at the resolutions of 100 and 50 microns, respectively. NI revealed signature 'twin-peaks and a valley' distribution of hardness and elastic modulus across the weld. The degrees of crystallinity obtained from DSC followed the NI pattern as crystallinity positively correlates with the material properties. Both techniques confirm annealing of the heat affected zone (HAZ) material towards the MZ from the parent material. The transmission light microscopy (TLM) was used to provide dimensions of the melt zone (MZ) which displays an hour glass figure widening to the size of the weld bead root length towards the pipe surfaces. Thermal FEA modelling was validated using both NI and TLM data to predict the HAZ size. The HAZ-parent boundary temperature was calculated to be 105 ⁰C. The 1st contribution of the study is to prove the existence of a positive correlation between the heat input calculated from FEA and the energy to break values obtained from the waisted tensile test. The 2nd contribution providing the minimum length of pipe for WPTCR based on the pipe dimensions. The 3rd contribution is the recommendation for the waisted tensile test with the test using the geometry designed to minimise deformation of the loading pin holes. The 4th contribution related the weld bead parameters to pipe wall stresses and the effect of notches as stress concentrators. The 5th contribution is a new method of visualising a welding procedure that can be used to not only compare the welding procedures but also predict the size of the MZ and the HAZ. The 6th contribution of the study is the proposal of new weld bead geometry that consist of the MZ bounded by the HAZ, for butt fusion welded joints of HDPE pipes.
17

Identificação de substâncias não intencionalmente adicionadas (NIAS) de PELBD expostas a envelhecimento natural e acelerado visando sua utilização em embalagens de alimentos

Agarrallua, Marcio Renato Àvila January 2015 (has links)
A indústria alimentícia utiliza variados materiais para embalagens, sendo o polietileno de baixa densidade linear (PELBD) um dos materiais de maior importância, por possuir características únicas e adequadas à produção de embalagens. A geração de espécies químicas em embalagens de alimentos vem sendo foco de estudos no mundo. Este controle de compostos é denominado como estudo de Substâncias Não Intencionalmente Adicionadas (NIAS) e tem sua importância justificada pela preocupação com a saúde humana devido à capacidade de contaminação do alimento embalado. Para este estudo foram escolhidas duas resinas PELBD amplamente aplicadas na produção de embalagens alimentícias, analisadas na forma de pellets. As amostras foram nomeadas como PELBD1 e PELBD2 e analisadas antes e após exposição natural e acelerada (estufa a 50°C) de um, dois e três meses. Ambas apresentaram grande aumento no número de NIAS detectadas por Cromatografia Gasosa com detecção de Massas (GC-MS) após envelhecimentos, quando comparadas à resina virgem, chegando a 1100% em PELBD1 e 100% em PELBD2, com surgimento de substâncias oxigenadas e tóxicas. O aditivo antioxidante ativo foi sendo consumido e analisado via Cromatografia Líquida de Alta Eficiência (HPLC) ao longo das exposições, confirmando os efeitos do envelhecimento. Através do Infravermelho por transformada de Fourier (FTIR) foi verificada degradação inicial em PELBD1 exposto por três meses à estufa. Porém, até mesmo em períodos menores de exposição natural, a formação de grupos cromóforos foi comprovada pela análise de cor, onde houve pequeno e gradual aumento do amarelecimento e diminuição da brancura principalmente em PELBD1. Por Cromatografia de Permeação à Gel (GPC), as amostras apresentaram pequena tendência para diminuição de M̅z. Já nas análises de Reometria Rotacional com variação de Frequência (DSR), Índice de Fluidez (IF) e Calorimetria Exploratória Diferencial (DSC), foram observadas mínimas tendências de degradação. Pode-se concluir a partir destes resultados que a maior degradação e produção de NIAS ocorreram em ambiente acelerado. Esta pesquisa trouxe grandes contribuições para futuros trabalhos que envolvam o estudo de NIAS e suas condições de formação. / The food industry uses various packaging materials being linear low density polyethylene (LLDPE) one of the most important materials, have unique features suitable for the production and packaging. The generation of chemical species in food packages has been the focus of research in the world. This control compounds is referred to as study Non-Intentionally Added Substances (NIAS) and has its importance justified by concern human health because of capacity contamination the food packaging. For this study it was chosen two LLDPE resins widely applied in the production of food packaging, analyzed in the form of pellets. The samples were named as PELBD1 and PELBD2 and analyzed before and after natural and accelerated exposure (oven at 50°C) of a two and three months. Both showed huge increase in the number of NIAS detected by Gas Chromatography with Mass detection (GC-MS) after ageing, when compared to virgin resin, reaching of 1100% in PELBD1 and 100% in PELBD2 with the appearance of oxygen substances and toxic substances. The active antioxidant additive was being consumed and analyzed via High-Performance Liquid Chromatography (HPLC), during the exposures, confirming the effects of ageing. For Fourier Transform Infrared (FTIR) was observed in initial degradation PELBD1 exposed for three months in an oven. However, even at under natural exposure periods, the formation of chromophoric groups were confirmed by analysis of color where there was a slight and gradual increase in yellowing and brightness decreased mainly PELBD1. For the Gel Permeation Chromatography (GPC), the samples showed a slight tendency to decrease M̅z. Already in the analysis of Rheometry Rotational Varying Frequency (DSR), Melt Flow Index (MFI) and Differential Scanning Calorimetry (DSC), were observed minimum trends of degradation. It can concluded from these results that the greatest degradation and NIAS production occurred in an accelerated environment. This research has brought great contributions to future work involving the study of NIAS and their conditions of training.
18

Advancements in the Understanding of Nonlinear Optics and Their Use in Material Analysis

Averett, Shawn C. 01 August 2017 (has links)
Adhesion, heterogeneous catalysis, electrochemistry, and many other important processes and properties are driven by interactions at surfaces and interfaces. Vibrational sum frequency generation spectroscopy (VSFG) is an increasingly popular analytical technique because it can provide information about the nature and physical orientation of functional groups at these surfaces and interfaces. Analysis of VSFG data can be complicated by the presence of SFG signal that is not associated with a resonant vibration. This nonresonant sum frequency generation (NR-SFG) signal can interfere with the resonant signal and influence the detected spectrum. Methods have been developed to remove NR-SFG signal; however, these methods tend to be complicated and expensive. In fact many SFG practitioners do not have the ability to remove NR-SFG signal components, and systems designed to remove NR-SFG signal contributions may not be able to do so for some materials. We have worked to help develop a better understanding of NR-SFG. As part of this work, a better understanding of the temporal and phase behavior of NR-SFG signal has been developed, based on the behavior of NR-SFG signal from Si(111) wafers. This work calls into question some assumptions underlying nonresonant suppression methods based on time-domain detection. A new method for nondestructively testing (NDT) materials has been developed that uses nonresonant second harmonic generation, the degenerate form of SFG. This new NDT technology has the potential to detect several forms of material damage, such as aluminum sensitization, and plastic deformation of materials, which are largely invisible to current NDT technologies. Methods for extracting functional group orientation from VSFG data that contains NR-SFG contributions are also demonstrated and used to investigate how the surface of high density polyethylene changes in response to mechanical deformation. This work shows that the inability to remove NR-SFG contributions from VSFG spectra does not mean that these instruments cannot be used to make important discoveries. It simply means that NR-SFG contributions must be properly understood and accounted for during experimental design, and kept in mind during the analysis of VSFG spectra.
19

Reciclagem mecânica-química de resíduos de filmes de polietileno de baixa densidade em combinação com o polipropileno / Mechanical-chemical recycling of low density polyethylene film waste in combination with polypropylene

Camargo, Rayane Veloso de 08 February 2019 (has links)
O desafio da gestão dos resíduos gerados pela produção e consumo de produtos sempre acompanhou a humanidade, revelando-se um problema quando se trata do seu descarte e destinação. No entanto, nos últimos anos verifica-se um agravamento deste problema, dado o volume e diversidade de resíduos gerados. Em especial, os resíduos poliméricos merecem bastante destaque pelo seu grande volume nos aterros sanitários e pela poluição causada em diversos ecossistemas. A reciclagem deste material é apontada como uma alternativa e auxílio na solução do problema. O presente estudo teve como objetivo o desenvolvimento de um método de reciclagem do polietileno de baixa densidade que envolve operações de processamento mecânico e tratamento térmico e químico do material. Para isto, blendas de resíduos de polietileno de baixa densidade (PEBD) e polipropileno (PP) com até 30 % em massa de PP foram preparadas com a incorporação de catalisadores do tipo zeólita ZSM-5 e Ziegler-Natta e submetidas ao tratamento térmico em condições controladas de temperatura e atmosfera de nitrogênio. Os resultados obtidos mostram a ação do catalisador zeólita ZSM- 5 como modificador da estrutura polimérica já na etapa de processamento termomecânico do material. Os catalisadores proporcionam mudanças consideráveis nas propriedades das blendas PEBD/PP, de acordo com as condições em que os ensaios são realizados. O tratamento de resíduos poliméricos em presença de catalisadores apresenta potencial para a reciclagem de resíduos poliméricos podendo gerar materiais reciclados com propriedades melhoradas. / The challenge for the waste management generated by the production and consume of products has always followed the Humankind, showing as a problem for discard and destination. However, in the last years an aggravation of this problem has been verified due to the volume and diversity of the waste produced. Particularly, the polymeric waste has a great prominence due to the large amount in landfills and pollution caused in several ecosystems. The polymeric recycling is indicated as an alternative for the problem. The aims of this study had been the development of a method for the recycling of the low-density polyethylene (LDPE) that involves mechanical processing operations and thermal-chemical treatment of the material. For this reason, blends of LDPE waste and polypropylene (PP) containing until 30 wt% of PP has been prepared with incorporation of zeolite ZSM-5 and Ziegler-Natta catalyst and submitted to thermal treatment under controlled conditions of temperature and nitrogen flow. The results presents the action of zeolite catalyst as modifier of the polymeric structure during step of the thermomechanical processing of the material. The catalysts have caused considerable changes on the properties of LDPE/PP blends, according to the experimental conditions. The treatment of polymeric waste in presence of catalyst shows potential for the recycling of polymeric materials and can generate recycled materials with improved properties.
20

A new composite material consisting of flax fibers, recycled tire rubber and thermoplastic

Fung, Jimmy Chi-Ming 19 November 2009
Canadian grown oilseed flax is known for its oils that are used for industrial products. The flax fiber may also have a use as a potential replacement for synthetic fibers as reinforcement in plastic composites. It can also be utilized as a cost effective and environmentally acceptable supplement in the biodegradable composites. Tire rubber is a complex material which does not decompose naturally. As a result, many researchers have been trying to develop new applications for recycling scrap tires. The conversion of flax straw and scrap tire into a profitable product may benefit the agricultural economy, tire recycling market, and our environment. The main goal of this research was to develop a biocomposite material containing recycled ground tire rubber (GTR), untreated flax fiber, and linear low-density polyethylene (LLDPE).<p> In this study, the new biocomposite material was successfully prepared from flax fiber/shives, GTR, and LLDPE through extrusion and compression molding processes. The composites were compounded through a single-screw extruder. Then the pelletized extrudates were hot pressed into the final biocomposites. The properties of the flax fiber-GTR-LLDPE biocomposites were defined by using tearing, tensile, water absorption, hardness, and differential scanning calorimetry (DSC) tests. The effects of the independent variables (flax fiber content and GTR-LLDPE ratio) on each of the dependent variables (tear strength from tearing test, tensile yield strength and Youngs modulus from tensile test, and weight increase from water absorption test) were modeled. The properties of the composites can be predicted by using the mathematical model with known flax fiber content and GTR-LLDPE ratio.<p> The tensile yield strength and stiffness of the biocomposite were improved with the addition of flax fiber. The optimal composition of the biocomposite material (with strongest tensile yield strength or highest Youngs modulus) was calculated by using the model equations. The maximum yield strength was found to exist for a flax fiber content of 10.7% in weight and GTR-LLDPE ratio of one. The largest Youngs modulus was found for a fiber content of 17.7% by weight and the same GTR-LLDPE ratio. Both of these fiber contents were less than the amount that would give a composite with a 2% weight increase in water absorption.

Page generated in 0.065 seconds