• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 236
  • 236
  • 176
  • 176
  • 175
  • 21
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Development of a Multi-Disciplinary Design Optimization Framework for a Strut-Braced Wing Transport Aircraft in PACELAB APD 3.1

Riggins, Benjamin Kirby 04 June 2015 (has links)
The purpose of this study was to extend the analysis methods in PACELAB APD 3.1, a recent commercially available aircraft preliminary design tool with potential for MDO applications, for higher fidelity with physics-based instead of empirical methods and to enable the analysis of nonconventional aircraft configurations. The implementation of these methods was first validated against both existing models and wind tunnel data. Then, the original and extended PACELAB APD versions were used to perform minimum-fuel optimizations for both a traditional cantilever and strut-braced wing aircraft for a medium-range regional transport mission similar to that of a 737-type aircraft, with a minimum range of 3,115 nm and a cruise Mach number of 0.78. The aerodynamics, engine size / weight estimation and structural modules were heavily modified and extended to accomplish this. Comparisons to results for the same mission generated with FLOPS and VT MDO are also discussed. For the strut-braced configuration, large fuel savings on the order of 37% over the baseline 737-800 aircraft are predicted, while for the cantilever aircraft savings of 10-30% are predicted depending on whether the default or VT methods are utilized in the PACELAB analysis. This demonstrates the potential of the strut-braced configuration for reducing fuel costs, as well as the benefit of MDO in the aircraft conceptual design process. For the cantilever aircraft, FLOPS and VT MDO predict fuel savings of 8% and 23%, respectively. VT MDO predicts a fuel savings of 28% for the strut-braced aircraft over the baseline. / Master of Science
192

3D thermal-electrochemical lithium-ion battery computational modeling

Gerver, Rachel Ellen 2009 August 1900 (has links)
The thesis presents a modeling framework for simulating three dimensional effects in lithium-ion batteries. This is particularly important for understanding the performance of large scale batteries used under high power conditions such as in hybrid electric vehicle applications. While 1D approximations may be sufficient for the smaller scale batteries used in cell phones and laptops, they are severely limited when scaled up to larger batteries, where significant 3D gradients can develop in concentration, current, temperature, and voltage. Understanding these 3D effects is critical for designing lithium-ion batteries for improved safety and long term durability, as well as for conducting effective design optimization studies. The model couples an electrochemical battery model with a thermal model to understand how thermal effects will influence electrochemical behavior and to determine temperature distributions throughout the battery. Several modeling example results are presented including thermal influences on current distribution, design optimization of current collector thickness and current collector tab placement, and investigation of lithium plating risk in three dimensions. / text
193

Optimization of Recombinant Protein Production by Streptomyces lividans Host

Nowruzi, Keyvan 19 March 2010 (has links)
Interleukin-3 is a cytokine, which acts on many target cells within the haemopoietic system, often in synergy with the other cytokines. Streptomyces lividans NCIMB 11416/IL3 p002 secreting human interleukin-3 was used as the host organism in this study of improving target protein production. Streptomyces also produces several proteases including extracellular endoprotease that truncate the N-terminus of the recombinant protein. Federal guidelines and regulations banning animal-derived medium components necessitate the refinement or redevelopment of industrial medium formulations. The development of a defined medium without animal products is most desirable for the production of pure and safe biological products. The objective of the proposed research was the development and application of engineering methodology for the development of a defined medium and the analysis and optimization of a bacterial bioprocess for recombinant protein production. The underlying hypothesis is that a significant improvement of target protein productivity is achievable by using appropriate optimization techniques. During the first phase of this study the task was to develop a systematic procedure for the design and optimization of a chemically defined medium. The study aimed at replacing casein peptone in conventional medium for S. lividans with essential amino acids and determining the optimum proportion of the amino acids. To accomplish this, starvation trials with growth limiting amino acids were performed to establish the baseline for the nutritional requirement. The starvation trials revealed that essential amino acids for growth and product formation are amongst the following eight amino acids: Arg, Asn, Asp, Glu, Leu, Met, Phe, and Thr. Following these preliminary experiments, a statistically based experimental method called mixture experiments along with distance-based multivariate analysis revealed that Asp, Leu, Met, and Phe were the essential amino acids. Then, another mixture experiment design known as simplex lattice design was performed and artificial neural networks were employed to obtain the optimum proportions of the essential amino acids. The optimal medium was found to be composed of 56% Asp, 5% Met, and 39% Phe. It was found in previous studies that in complex media, several types of protease are produced during fermentation. Using the defined medium no proteolytic activity was detected in the fermentation broth. The second optimization method was based on metabolic flux analysis. A comprehensive metabolic network was developed for S. lividans. The metabolic network included carbohyderate and amino acid metabolism in both anabolic and catabolic reactions. According to the experimental results, the time course of the fermentation was divided into two phases, Phase E1 and Phase E2. In the first phase amino acids were used as a nitrogen source and in the second phase ammonia was the nitrogen source for growth and product formation. The metabolic network was used to form a set of linear algebraic equations based on the stoichiometry of the reactions by assuming pseudo-steady state for intracellular metabolites. The metabolic flux model consisted of 62 intracellular metabolites and 91 biochemical reactions. Two different objective functions were considered for optimization: maximizing the specific growth rate and minimizing the redox equivalent. A linear programming approach was used for optimizing the objective functions. The proposed model was able to predict the specific growth rate very accurately with a maximum error of 10%. The oxygen uptake rate and carbon dioxide evolution rate were evaluated with maximum error of 27% and 35%, respectively. Sensitivity analysis revealed that amino acid uptake was the growth limiting flux during the Phase E1 of the fermentation. During Phase E2 the uptake rate of ammonia had a significant effect on the specific growth rate. Sensitivity analysis of the specific growth rate and redox potential with respect to the biomass components showed that any additional supply of biomass building blocks (amino acids, nucleotides) would not significantly affect the specific growth rate and redox potential production as well as the calculated flux pattern.
194

Application of decision diagrams for information storage and retrieval

Komaragiri, Vivek Chakravarthy. January 2002 (has links)
Thesis (M.S.)--Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
195

Optimization of Recombinant Protein Production by Streptomyces lividans Host

Nowruzi, Keyvan 19 March 2010 (has links)
Interleukin-3 is a cytokine, which acts on many target cells within the haemopoietic system, often in synergy with the other cytokines. Streptomyces lividans NCIMB 11416/IL3 p002 secreting human interleukin-3 was used as the host organism in this study of improving target protein production. Streptomyces also produces several proteases including extracellular endoprotease that truncate the N-terminus of the recombinant protein. Federal guidelines and regulations banning animal-derived medium components necessitate the refinement or redevelopment of industrial medium formulations. The development of a defined medium without animal products is most desirable for the production of pure and safe biological products. The objective of the proposed research was the development and application of engineering methodology for the development of a defined medium and the analysis and optimization of a bacterial bioprocess for recombinant protein production. The underlying hypothesis is that a significant improvement of target protein productivity is achievable by using appropriate optimization techniques. During the first phase of this study the task was to develop a systematic procedure for the design and optimization of a chemically defined medium. The study aimed at replacing casein peptone in conventional medium for S. lividans with essential amino acids and determining the optimum proportion of the amino acids. To accomplish this, starvation trials with growth limiting amino acids were performed to establish the baseline for the nutritional requirement. The starvation trials revealed that essential amino acids for growth and product formation are amongst the following eight amino acids: Arg, Asn, Asp, Glu, Leu, Met, Phe, and Thr. Following these preliminary experiments, a statistically based experimental method called mixture experiments along with distance-based multivariate analysis revealed that Asp, Leu, Met, and Phe were the essential amino acids. Then, another mixture experiment design known as simplex lattice design was performed and artificial neural networks were employed to obtain the optimum proportions of the essential amino acids. The optimal medium was found to be composed of 56% Asp, 5% Met, and 39% Phe. It was found in previous studies that in complex media, several types of protease are produced during fermentation. Using the defined medium no proteolytic activity was detected in the fermentation broth. The second optimization method was based on metabolic flux analysis. A comprehensive metabolic network was developed for S. lividans. The metabolic network included carbohyderate and amino acid metabolism in both anabolic and catabolic reactions. According to the experimental results, the time course of the fermentation was divided into two phases, Phase E1 and Phase E2. In the first phase amino acids were used as a nitrogen source and in the second phase ammonia was the nitrogen source for growth and product formation. The metabolic network was used to form a set of linear algebraic equations based on the stoichiometry of the reactions by assuming pseudo-steady state for intracellular metabolites. The metabolic flux model consisted of 62 intracellular metabolites and 91 biochemical reactions. Two different objective functions were considered for optimization: maximizing the specific growth rate and minimizing the redox equivalent. A linear programming approach was used for optimizing the objective functions. The proposed model was able to predict the specific growth rate very accurately with a maximum error of 10%. The oxygen uptake rate and carbon dioxide evolution rate were evaluated with maximum error of 27% and 35%, respectively. Sensitivity analysis revealed that amino acid uptake was the growth limiting flux during the Phase E1 of the fermentation. During Phase E2 the uptake rate of ammonia had a significant effect on the specific growth rate. Sensitivity analysis of the specific growth rate and redox potential with respect to the biomass components showed that any additional supply of biomass building blocks (amino acids, nucleotides) would not significantly affect the specific growth rate and redox potential production as well as the calculated flux pattern.
196

Interconnects for future technology generations - conventional CMOS with copper/low-k and beyond

Ceyhan, Ahmet 12 January 2015 (has links)
The limitations of the conventional Cu/low-k interconnect technology for use in future ultra-scaled integrated circuits down to 7 nm in the year 2020 are investigated from the power/performance point of view. Compact models are used to demonstrate the impacts of various interconnect process parameters, for instance, the interconnect barrier/liner bilayer thickness and aspect ratio, on the design and optimization of a multilevel interconnect network. A framework to perform a sensitivity analysis for the circuit behavior to interconnect process parameters is created for future FinFET CMOS technology nodes. Multiple predictive cell libraries down to the 7‒nm technology node are constructed to enable early investigation of the electronic chip performance using commercial electronic design automation (EDA) tools with real chip information. Findings indicated new opportunities that arise for emerging novel interconnect technologies from the materials and process perspectives. These opportunities are evaluated based on potential benefits that are quantified with rigorous circuit-level simulations and requirements for key parameters are underlined. The impacts of various emerging interconnect technologies on the performances of emerging devices are analyzed to quantify the realistic circuit- and system-level benefits that these new switches can offer.
197

Design Of A Computer Interface For Automatic Finite Element Analysis Of An Excavator Boom

Yener, Mehmet 01 May 2005 (has links) (PDF)
The aim of this study is to design a computer interface, which links the user to commercial Finite Element Analysis (FEA) program, MSC.Marc-Mentat to make automatic FE analysis of an excavator boom by using DELPHI as platform. Parametrization of boom geometry is done to add some flexibility to interface called OPTIBOOM. Parametric FE analysis of a boom shortens the design stages and helps to find the optimum design in terms of stresses and mass.
198

Performance Study and Dynamic Optimization Design for Thread Pool Systems

Dongping Xu January 2004 (has links)
19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2359" Dongping Xu. 12/19/2004. Report is also available in paper and microfiche from NTIS.
199

Reliability Based Multi-Objective Design Optimization for Switched Reluctance Machines

Vadamodala, Lavanya 19 May 2021 (has links)
No description available.
200

Výroba dílů s odlehčenou strukturou a topologickou optimalizací / Manufacturing of parts with lattice structure and topological optimization

Pospíšil, Jan January 2020 (has links)
This thesis deals vith the design of welding torch holder using topology optimization and lattice structure. The objective of this thesis is gaining knowledge about topology optimization in different software and aplication of methods to that part. Conclusion of this thesis is about production design and economic evaluation.

Page generated in 0.1261 seconds