• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antenna design challenge

Ham, Hubert K. 10 October 2014 (has links)
In today's new and changing world, Science, Technology, Engineering, Math (STEM) education has come to the forefront of educational reform. The expectation for better prepared workers for today's technology infused businesses requires a better trained student, not only at the post-secondary level, but also at the secondary level. Today's student has access to technology that could have only been dreamed of 60 years ago. With this need for higher level skills in the STEM field for the work force, it would only be logical to expose students to aspects of engineering in younger grades, particularly at the high school level. The Antenna Design challenge has been designed to expose students to the engineering process and technology that is relevant to their everyday lives. This report will examine how an engineering challenge can be incorporated into the physics classroom, while observing how different levels of scaffolding affect mastery of the material and implementation of the lesson. / text
2

The Implementation of Engineering Design Challenges on 4th Grade Students' Attitudes Towards Engineering, Classroom Climate, and Writing Ability

Newby, Tara L. 01 January 2012 (has links)
The purpose of this study was to determine if my practice of having 4th grade students participate in engineering design challenges impacted their attitudes towards engineering, the classroom climate, and writing ability. In this action research students were given a pre and posttest that measured their attitudes towards engineering and their perceptions of the classroom climate. A pre and post written reflection was also examined and compared for the use of predicting, observing, thinking, explaining, reflecting, and yearning to learn more. A triangulation of data included the use of pre and posttest statistical analysis, rubrics, teacher observation, and student interviews. The data collected from this action research project showed that that students were more satisfied with the course after completing the design challenges, the classroom environment improved in that students perceived the level of friction in the class had decreased. The data collected also showed that students' attitudes towards engineers was changed in that they were more likely to want to pursue a career in engineering and take a future school course in engineering after having completed this action research. Student generated definitions of engineers demonstrated a decrease in the number of misconceptions about the work of engineers and an increase in students' knowledge as to what engineers do for a living. My practice of implementing engineering design challenges with a 4th grade class did not have an impact on students writing ability.
3

Redesign of the Helmet Design Capstone Project

Evans, Michael Lee 26 November 2012 (has links)
This report is the culmination of a master’s program resulting in a Master of Arts in Science Technology Engineering Mathematics (STEM) Education. The author is a veteran high school physics teacher who has participated in the ongoing development of the Engineering Design and Problem Solving Course created by UTeachEngineering and The University of Texas at Austin. As a pilot instructor teaching this course, the author has experienced the teething problems common to radically new curriculum. The trials and tribulations of a twelve-week capstone design project, that was the last engineering challenge of the inaugural year of the course, are discussed. Reasons for the module’s failure and modifications for improvement are suggested and supported by a survey of current literature. The author uses the engineering design process to reengineer the Helmet DesignCapstone Project. This report identifies the needs of the teachers and students who are, in fact, the customers of the redesign, and provides a step-by-step plan for improving the project to make it easier for the teachers and more engaging for the students. All of the instructions and material lists needed to build the testing devices and conduct the student activities are presented in detail. In this second iteration of the project, the design challenge for the students will be to evaluate the impact performance of a skateboard-type helmet and use simple tests to characterize the impact performance of various foam types. Using the insights gained by the characterization of the foam, students will design and install foam composite padding into the helmet. The engineering principle that is being stressed is the use of data acquisition for making informed design decisions, rather than trial and error testing. The report concludes with some reflections by the author about the lessons learned while developing this project and the impact they will have on his classroom practices. / text
4

Academic Performance as a Predictor of Student Growth in Achievement and Mental Motivation During an Engineering Design Challenge in Engineering and Technology Education

Mentzer, Nathan 01 December 2008 (has links)
The purpose of this correlational research study was to determine if students’ academic success was correlated with: (a) the student change in achievement during an engineering design challenge; and (b) student change in mental motivation toward solving problems and critical thinking during an engineering design challenge. Multiple experimental studies have shown engineering design challenges increase student achievement and attitude toward learning, but conflicting evidence surrounded the impact on higher and lower academically achieving students. A high school classroom was chosen in which elements of engineering design were purposefully taught. Eleventh-grade student participants represented a diverse set of academic backgrounds (measured by grade point average [GPA]). Participants were measured in terms of achievement and mental motivation at three time points. Longitudinal multilevel modeling techniques were employed to identify significant predictors in achievement growth and mental motivation growth during the school year. Student achievement was significantly correlated with science GPA, but not math or communication GPA. Changes in achievement score over time are not significantly correlated with science, math, or communication. Mental motivation was measured by five subscales. Mental focus was correlated with math and science GPA. Mental focus increases over time were negatively correlated with science GPA, which indicated that the initial score differential (between higher and lower science GPA students) was decreased over time. Learning orientation and cognitive integrity were not correlated with GPA. Creative problem solving was correlated with science GPA, but gains over time were not correlated with GPA. Scholarly rigor was correlated with science GPA, but change over time was not correlated with GPA. (284 pages)
5

Pre-assessment of the Impact of Design Challenge Fabrication Modality on Engineering Self-Efficacy

Amarir, Amine 17 June 2021 (has links)
The introduction of project-based learning into university engineering programs has been shown to positively benefit students that prefer a hands-on experience and give future employers assurance that recent graduates have the tools to handle real-world problems as opposed to theoretical situations. Enhancing the engineering self-efficacy of students, recent graduates and seasoned engineers is made possible through the solution of complex, open-ended problems typically found in engineering design. A high engineering self-efficacy, in turn, positively reflects a person's perception of their complex problem-solving capacity which is critical throughout the design process. The decision to either work virtually with a team or onsite with group members nearby may also further influence self-efficacy and, ultimately, the designer's success. This raises the question explored in this study: Will a design challenge impact engineering self-efficacy equally for online and in-person participants? Two groups engaged in a design challenge to develop a mechanism meant for drone applications, where one group designed and tested their solution in-person, while the other group sent design plans to a third-party for fabrication and testing. Participants filled out a prototype engineering self-efficacy scale before and after the challenge, revealing a significant difference between these two modalities. The small sample size is noted as the cause for inaccuracies and surprising findings. Guidelines for methodology implementation in a larger scale study are included. / Master of Science / In project-based learning courses, students work in groups to make a prototype or other solution to a stated problem, which are helpful for building student confidence in problem-solving, critical thinking and, especially, engineering skills. This confidence translates to believing that carrying out a specific task will lead to success with little-to-no feelings of fear or failure. This generally describes "self-efficacy," and it can apply to any profession. Traditionally, hands-on projects are done in person, where an exchange of ideas is clear and any problems can be handled immediately. However, with schools closed due to the COVID-19 pandemic, these courses had to shift online, leading some to believe that students would not receive the same level and quality of engineering education. Online learning has been around for over 30 years and studies show that students learn just as much, if not more and better, online than sitting in a classroom. Can the same be said for taking part in an engineering project over the internet? Two groups designed a prototype drone attachment, where members of one group worked side-by-side to build and test their solution, while members of the other group worked online and sent files and assembly instructions to a third party. Each participant also filled out a questionnaire before and after the challenge to track their engineering self-efficacy. The limited data led to the conclusion that there is a noticeable difference between the two project completion methods, most likely caused by a low number of participants. The lessons learned from this study were used to create guidelines for a larger-scale study.

Page generated in 0.0634 seconds