Spelling suggestions: "subject:"detoxificação"" "subject:"desertificação""
11 |
Aproveitamento da biomassa seca de Candida guilliermondii FTI 20037 como agente destoxificante do hidrolisado hemicelulósico da mistura de bagaço e palha de cana-de-açúcar para a produção biotecnológica de xilitol / Utilization of the dried biomass of Candida guilliermondii FTI 20037 as a detoxifying agent of the hemicellulosic hydrolysate of sugarcane bagasse and straw mixture for the biotechnological production of xylitolJofre, Fanny Machado 27 May 2019 (has links)
Subprodutos provenientes de biomassas lignocelulósicas contém composição química rica em açúcares, os quais podem ser aproveitados em diferentes processos fermentativos, como na produção biotecnológica de xilitol, um importante insumo para os segmentos industriais alimentício, farmacêutico e odontológico. A despolimerização da parede celular vegetal é uma etapa importante para o aproveitamento destas biomassas em bioprocessos, como para obtenção do hidrolisado hemicelulósico, que tem a hidrólise ácido diluído como um dos principais métodos utilizados. Entretanto, além da solubilização dos açúcares, ocorre a liberação e formação de compostos tóxicos aos microrganismos, principalmente compostos fenólicos. Frente a este problema, metodologias de destoxificação dos hidrolisados vem sendo estudadas, de forma a se obter um método mais econômico, sustentável e rentável. Assim sendo, este trabalho tem o objetivo de aproveitar a biomassa seca de Candida guilliermondii FTI 20037 proveniente da bioprodução de xilitol, como agente destoxificante do hidrolisado hemicelulósico da mistura de bagaço e palha de cana-de-açúcar. Aproveitou-se a biomassa da levedura proveniente do cultivo em hidrolisado hemicelulósico da mistura de bagaço e palha de cana-de-açúcar (1:1) suplementado com nutrientes. Esta biomassa foi autoclavada, seca em estufa a 90°C até peso constante, triturada em gral com pistilo, e empregada na destoxificação do hidrolisado hemicelulósico. Foi empregado planejamento fatorial 24 com triplicata no ponto central, sendo as variáveis avaliadas o pH do hidrolisado, proporção entre a biomassa seca e hidrolisado, tempo de contato e temperatura. Como experimento controle empregou-se a destoxificação com carvão vegetal ativado. Observou-se que o tratamento do hidrolisado com biomassa seca de C. guilliermondii no HHBP reduziu o teor dos compostos tóxicos avaliados, principalmente de compostos fenólicos. Neste caso, a máxima remoção com a biomassa seca foi de 27%, enquanto que com o carvão, esta foi de 40,3%. Ambos procedimentos levaram a uma pequena perda dos açúcares xilose, glicose e arabinose. A condição de destoxificação com a biomassa seca estabelecida no planejamento fatorial que se verificou maior remoção de fenólicos foi empregada para a avaliação da produção de xilitol. Verificou-se que o máximo consumo de xilose (89%) ocorreu com o uso do carvão, enquanto que para a biomassa seca foi de 80,2%. Porém, o fator de conversão de xilose a xilitol foi favorecido com o uso de biomassa seca, enquanto a produtividade volumétrica de xilitol foi favorecida pelo uso do carvão. Estes resultados obtidos são promissores quanto a possibilidade de ser estabelecido um método alternativo de destoxificação de hidrolisados provenientes de biomassas vegetais, a partir do aproveitamento da biomassa microbiana residual do processo fermentativo da produção de xilitol. / By-products from lignocellulosic biomass contain a chemical composition rich in sugars, which can be used in different fermentation processes, as in the biotechnological production of xylitol, an important input for the food, pharmaceutical and dental industries. The depolymerization of the plant cell wall is an important step for the utilization of these biomasses in fermentative bioprocesses, such as to obtain the hemicellulosic hydrolysate, which has dilute acid hydrolysis as one of the main methods used. However, besides the solubilization of sugars, this method releases and make toxic compounds to microorganisms, mostly phenolic compounds. In view of this problem, methodologies for detoxification of hydrolysate have been studied in order to obtain a more economical, sustainable and profitable method. Therefore, this work aims to take advantage of the dried biomass of Candida guilliermondii FTI 20037 derived from the bioproduction of xylitol as a detoxifying agent of the hemicellulosic hydrolysate of the sugarcane bagasse and straw (HHSBS) mixture. The yeast biomass cultivated on the hemicellulosic hydrolysate of sugarcane bagasse and straw mixture (1:1) and supplemented with nutrients was used. This biomass was autoclaved, oven dried at 90 °C until constant weight, ground with mortar and pestle, and used on detoxification of the hemicellulosic hydrolysate, by a 24 factorial design with triplicate at the central point. The variables evaluated were pH of HHSBS, ratio between dry biomass and HHSBS, time of contact and temperature. The control experiment was the hydrolysate detoxification by activated charcoal. It was observed that the use of dried biomass of C. guilliermondii in HHSBS reduced the content of all toxic compounds evaluated, mainly phenolic compounds. The phenolic compounds maximum removal by using dried biomass was 27%, although the use of activated charcoal removed 40.3%. Both procedures led to a small loss of sugars (xylose, glucose and arabinose). The condition removed the highest phenolic content was submitted to the fermentability test, aiming the production of xylitol. It was verified that the highest consumption of xylose (89%) occurred with the use of charcoal, whereas for the dried biomass it was 80.2%. However, the conversion factor of xylose to xylitol was favored using dried biomass, while the volumetric productivity of xylitol was favored by using charcoal. The results obtained are promising to establish an alternative method for detoxification of hemicellulosic hydrolysates by using residual microbial biomass from the fermentation process of xylitol production.
|
12 |
Ampliação de escala da produção biotecnológica de xilitol a partir do bagaço de cana-de-açúcar / Evaluation of the biotechnological process for xylitol obtainment at different scales from the sugarcane bagasse hemicellulosic hydrolysateArruda, Priscila Vaz de 15 July 2011 (has links)
A conversão de biomassa vegetal em produtos químicos e energia é essencial a fim de sustentar o nosso modo de vida atual. O bagaço de cana-de-açúcar, matériaprima disponível em abundância no Brasil, poderá tanto ajudar a suprir a crescente demanda pelo etanol combustível como ser empregado para obtenção de produtos de valor agregado, tais como xilitol, além de trazer vantagens econômicas para o setor sucroalcooleiro. O xilitol, um poliol com poder adoçante semelhante ao da sacarose e com propriedades peculiares, como metabolismo independente de insulina, anticariogenicidade e aplicações na área clínica, no tratamento de osteoporose e de doenças respiratórias, é obtido em escala comercial por catálise química de materiais lignocelulósicos. A produção biotecnológica de xilitol como alternativa ao processo químico vem sendo pesquisada e os resultados revelam que a presença de compostos tóxicos nos hidrolisados hemicelulósicos resultantes do processo de hidrólise ácida contribui para sua baixa fermentabilidade. Isto se deve à inibição do metabolismo microbiano causada principalmente por compostos tais como ácidos orgânicos, fenólicos e íons metálicos. No presente trabalho foi avaliado o efeito de diferentes fontes de carbono (xilose, glicose e mistura de xilose e glicose) empregadas no preparo do inóculo de Candida guilliermondii FTI 20037 sobre a bioconversão de xilose em xilitol a partir de fermentações em frascos Erlenmeyer de hidrolisados hemicelulósicos submetidos a procedimentos de destoxificação. A condição de favorecimento deste bioprocesso foi empregada para a avaliação da ampliação de escala em fermentadores de 2,4L para 16L, utilizando como critério de ampliação o KLa (igual a 15h-1). De acordo com os resultados, os máximos valores dos parâmetros fermentativos como fator de conversão de xilose em xilitol e produtividade em xilitol foram alcançados com a utilização de inóculo obtido em xilose durante fermentação do hidrolisado destoxificado por resinas (YP/S = 0,81 g g-1 e QP = 0,60 g L-1 h-1, respectivamente), embora o emprego de carvão ativado tenha gerado valores de rendimento próximos para as diferentes fontes de carbono (YP/S variando de 0,78 a 0,80 g g-1). Considerando o valor de fator de conversão e que o procedimento de destoxificação com carvão ativado é o de menor custo e de mais fácil manipulação em comparação ao processo com resinas, os experimentos de ampliação de escala da produção de xilitol por C. guilliermondii foram realizados nesta condição de destoxificação e empregando-se xilose como fonte de carbono para o inóculo. Nesta etapa ficou evidente a viabilidade de ampliação de escala de produção de xilitol de fermentador de 2,4L para 16L, já que os valores dos parâmetros fermentativos avaliados foram semelhantes entre os fermentadores (valores médios: YP/S ≈ 0,68 g g-1 e QP ≈ 0,28 g L-1 h-1). No entanto, tais valores foram inferiores aos obtidos em frascos Erlenmeyer, possivelmente devido às condições de disponibilidade de oxigênio diferirem nos fermentadores de bancada, uma vez que o oxigênio é o parâmetro mais crítico neste bioprocesso. / The conversion of vegetable biomass into chemicals and energy is essential to sustain our current style of life. Sugarcane bagasse, a raw material abundantly available in Brazil, greatly contributes to the supply of the evergrowing demand for ethanol. Furthermore, biomass can be employed for obtaining value-added products, such as xylitol, as well as bring economical advantages for the sugar-ethanol sector. Xylitol, a polyol with sweetener power similar to that of saccharose and peculiar properties such as insulin-independent metabolism, anticariogenic power, and applications in the clinical area, in the treatment of osteoporosis and respiratory diseases, is obtained on a commercial scale by chemical catalysis of lignocellulosic materials. The biotechnological production of xylitol as an alternative to the chemical process has been researched and the results reveal that the presence of toxic compounds in hemicelllosics hydrolysates resulting from acid hydrolysis process contributes to its low fermentability. Such toxicity could be due to the inhibition of microbial metabolism promoted mainly by compounds such as organic acids, phenols and metallic ions. In the present work, the effect of different carbon sources (xylose, glucose and a mixture of xylose and glucose) used in the inoculum preparation of Candida guilliermondii FTI 20037 for the xylose-to-xylitol bioconversion by fermentation of hemicellulosics hydrolysates submitted to detoxification procedures in Erlenmeyer flasks was evaluated. The best condition for this bioprocess was employed to evaluate the scale up from the 2.4L to 16L fermentors, using KLa (equal to 15h-1) as scale-up criteria. According to the results the highest values of fermentative parameters such as xylitol yield and productivity were achieved with the use of inoculum cultivated on xylose during the fermentation of hydrolysate detoxified with resins (YP/S = 0.81 g g-1 and QP = 0.60 g L-1 h-1, respectively), although with the use of charcoal the yield value was similar (YP/S ranging for 0.78 to 0.80 g g-1), regardless of the carbon source employed. Considering the value of xylitol yield and that detoxification with activated charcoal is less expensive and more easily manipulated when compared to detoxification procedure with resins, the experiments for scale up xylitol production by C. guilliermondii were performed in such detoxification condition with xylose as the carbon source for the inoculum. At this stage it was evident the scale up xylitol production from a fermenter of 2.4L to 16L was feasible, since the values of fermentative parameters evaluated were similar to those of the fermentors (medium values YP/S ≈ 0.68 g g-1 e QP ≈ 0.28 g L-1 h-1). However, these values were lower than those obtained in Erlenmeyer flasks, maybe due to conditions of oxygen availability for they differ from those in fermentors, since oxygen is the most critical parameter in this bioprocess.
|
13 |
Destoxificação de hidrolisados lignocelulósico visando à obtenção de etanol 2G / Detoxification of lignocellulosic hydrolysates aiming at obtaining ethanol 2GGomes, Márcia Andréa 24 February 2015 (has links)
The sugarcane bagasse has a high content of lignocellulosic material, which enables the study for the production of second-generation ethanol, requiring the application of a pretreatment that promotes the rupture of the fiber, to make accessible sugars for fermentation. There are several pretreatments aimed at the break and in the search for the most productive one, it is applied severe conditions of temperature and pressure. This promotes the formation of undesirable products in the bioethanol production process, requiring detoxification step for removal of inhibitors. In this study, we used the detoxifying step for two pretreatments, hydrothermal and acid. The methodology raised the pH of the hydrolysates resulting from the acid pretreatment to 7.0 with calcium oxide and then decay to pH 4.0 with phosphoric acid. The hydrolysates of the hydrothermal pretreatment had its pH reduced to 4.0 by addition of phosphoric acid, both pretreated were subjected to adsorption on activated carbon (1% w /v , 100 rpm , 30 minutes at 50 ° C), conditions chosen after design 22 after triplicate with the center point. The evaluation of the efficacy of these procedures was made as to the removal of toxic compounds depending on the fermentation yield with the yeast Saccharomyces cerevisiae, hydrolysates with and without detoxification, assessing the amount of released sugars for conversion into second-generation ethanol. According to the results , the change of pH combined with activated carbon adsorption led to higher fermentation yields in both pretreated 38.51% acid and hydrothermal 44.85% hydrolyzed , when compared to the yield of samples not detoxified , these results may be associated with interference of lignin in the pulp, which can form condensation products able to interfere with the detoxification. However the best results were found in the hydrolysate hydrothermally pretreated with 87.94% efficiency and fermentation alcohol content of 7.41%, compared to the pre-treated hydrolysate with acid and 5.11% 75.05% respectively. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O bagaço de cana-de-açúcar possui alto teor de material lignocelulósico, o que viabiliza o estudo para a produção do etanol de segunda geração, sendo necessária a aplicação de um pré tratamento que promova a ruptura da fração fibrosa, para tornar os açucares acessíveis para fermentação. Existem vários pré-tratamentos que visam essa quebra, e na busca pelo mais produtivo são aplicadas condições severas de temperatura e pressão. Isso propicia a formação de produtos indesejáveis ao processo de produção do bioetanol, sendo necessária a etapa de destoxificação para remoção os inibidores. Nesse trabalho, foi empregado a etapa de destoxificação para dois pré-tratados acido e hidrotérmico, na metodologia utilizada elevou-se o pH dos hidrolisados provenientes do pré-tratamento acido para 7,0 com oxido de cálcio e em seguida o decaimento ate pH 4,0 com acido fosfórico, os hidrolisados do pré-tratamento hidrotérmico tiveram seu pH reduzidos para 4,0 com a adição do acido fosfórico, ambos os pré-tratados foram submetidos a adsorção em carvão ativado (1% m/v, 100rpm, 30 minutos a 50°C), condições escolhidas apos planejamento 22 com triplicata no ponto central. Avaliação da eficácia destes procedimentos foi feita quanto a remoção dos compostos tóxicos em função do rendimento fermentativo com a levedura Saccharomyces cerevisiae, de hidrolisados com e sem destoxificação, avaliando a quantidade de açúcares liberados para conversão em etanol de segunda geração. De acordo com os resultados, a alteração de pH combinada a adsorção com carvão ativo propiciou maiores rendimentos fermentativos em ambos os hidrolisados pré-tratados acido 38,51% e hidrotérmico 44,85%, quando comparados ao rendimento de amostras não destoxificadas, a esses resultados pode estar associado a interferência da lignina no bagaço, que pode formar produtos de condensação capazes de interferir na destoxificação. No entanto os melhores resultados foram encontrados no hidrolisado pré-tratado hidrotémicamente com 87,94% de eficiência de fermentação e teor alcoólico de 7,41%, quando comparado ao hidrolisado pré-tratado com acido de 75,50% e 5,11%, respectivamente.
|
14 |
Ampliação de escala da produção biotecnológica de xilitol a partir do bagaço de cana-de-açúcar / Evaluation of the biotechnological process for xylitol obtainment at different scales from the sugarcane bagasse hemicellulosic hydrolysatePriscila Vaz de Arruda 15 July 2011 (has links)
A conversão de biomassa vegetal em produtos químicos e energia é essencial a fim de sustentar o nosso modo de vida atual. O bagaço de cana-de-açúcar, matériaprima disponível em abundância no Brasil, poderá tanto ajudar a suprir a crescente demanda pelo etanol combustível como ser empregado para obtenção de produtos de valor agregado, tais como xilitol, além de trazer vantagens econômicas para o setor sucroalcooleiro. O xilitol, um poliol com poder adoçante semelhante ao da sacarose e com propriedades peculiares, como metabolismo independente de insulina, anticariogenicidade e aplicações na área clínica, no tratamento de osteoporose e de doenças respiratórias, é obtido em escala comercial por catálise química de materiais lignocelulósicos. A produção biotecnológica de xilitol como alternativa ao processo químico vem sendo pesquisada e os resultados revelam que a presença de compostos tóxicos nos hidrolisados hemicelulósicos resultantes do processo de hidrólise ácida contribui para sua baixa fermentabilidade. Isto se deve à inibição do metabolismo microbiano causada principalmente por compostos tais como ácidos orgânicos, fenólicos e íons metálicos. No presente trabalho foi avaliado o efeito de diferentes fontes de carbono (xilose, glicose e mistura de xilose e glicose) empregadas no preparo do inóculo de Candida guilliermondii FTI 20037 sobre a bioconversão de xilose em xilitol a partir de fermentações em frascos Erlenmeyer de hidrolisados hemicelulósicos submetidos a procedimentos de destoxificação. A condição de favorecimento deste bioprocesso foi empregada para a avaliação da ampliação de escala em fermentadores de 2,4L para 16L, utilizando como critério de ampliação o KLa (igual a 15h-1). De acordo com os resultados, os máximos valores dos parâmetros fermentativos como fator de conversão de xilose em xilitol e produtividade em xilitol foram alcançados com a utilização de inóculo obtido em xilose durante fermentação do hidrolisado destoxificado por resinas (YP/S = 0,81 g g-1 e QP = 0,60 g L-1 h-1, respectivamente), embora o emprego de carvão ativado tenha gerado valores de rendimento próximos para as diferentes fontes de carbono (YP/S variando de 0,78 a 0,80 g g-1). Considerando o valor de fator de conversão e que o procedimento de destoxificação com carvão ativado é o de menor custo e de mais fácil manipulação em comparação ao processo com resinas, os experimentos de ampliação de escala da produção de xilitol por C. guilliermondii foram realizados nesta condição de destoxificação e empregando-se xilose como fonte de carbono para o inóculo. Nesta etapa ficou evidente a viabilidade de ampliação de escala de produção de xilitol de fermentador de 2,4L para 16L, já que os valores dos parâmetros fermentativos avaliados foram semelhantes entre os fermentadores (valores médios: YP/S ≈ 0,68 g g-1 e QP ≈ 0,28 g L-1 h-1). No entanto, tais valores foram inferiores aos obtidos em frascos Erlenmeyer, possivelmente devido às condições de disponibilidade de oxigênio diferirem nos fermentadores de bancada, uma vez que o oxigênio é o parâmetro mais crítico neste bioprocesso. / The conversion of vegetable biomass into chemicals and energy is essential to sustain our current style of life. Sugarcane bagasse, a raw material abundantly available in Brazil, greatly contributes to the supply of the evergrowing demand for ethanol. Furthermore, biomass can be employed for obtaining value-added products, such as xylitol, as well as bring economical advantages for the sugar-ethanol sector. Xylitol, a polyol with sweetener power similar to that of saccharose and peculiar properties such as insulin-independent metabolism, anticariogenic power, and applications in the clinical area, in the treatment of osteoporosis and respiratory diseases, is obtained on a commercial scale by chemical catalysis of lignocellulosic materials. The biotechnological production of xylitol as an alternative to the chemical process has been researched and the results reveal that the presence of toxic compounds in hemicelllosics hydrolysates resulting from acid hydrolysis process contributes to its low fermentability. Such toxicity could be due to the inhibition of microbial metabolism promoted mainly by compounds such as organic acids, phenols and metallic ions. In the present work, the effect of different carbon sources (xylose, glucose and a mixture of xylose and glucose) used in the inoculum preparation of Candida guilliermondii FTI 20037 for the xylose-to-xylitol bioconversion by fermentation of hemicellulosics hydrolysates submitted to detoxification procedures in Erlenmeyer flasks was evaluated. The best condition for this bioprocess was employed to evaluate the scale up from the 2.4L to 16L fermentors, using KLa (equal to 15h-1) as scale-up criteria. According to the results the highest values of fermentative parameters such as xylitol yield and productivity were achieved with the use of inoculum cultivated on xylose during the fermentation of hydrolysate detoxified with resins (YP/S = 0.81 g g-1 and QP = 0.60 g L-1 h-1, respectively), although with the use of charcoal the yield value was similar (YP/S ranging for 0.78 to 0.80 g g-1), regardless of the carbon source employed. Considering the value of xylitol yield and that detoxification with activated charcoal is less expensive and more easily manipulated when compared to detoxification procedure with resins, the experiments for scale up xylitol production by C. guilliermondii were performed in such detoxification condition with xylose as the carbon source for the inoculum. At this stage it was evident the scale up xylitol production from a fermenter of 2.4L to 16L was feasible, since the values of fermentative parameters evaluated were similar to those of the fermentors (medium values YP/S ≈ 0.68 g g-1 e QP ≈ 0.28 g L-1 h-1). However, these values were lower than those obtained in Erlenmeyer flasks, maybe due to conditions of oxygen availability for they differ from those in fermentors, since oxygen is the most critical parameter in this bioprocess.
|
Page generated in 0.0538 seconds