• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização das cisteína desulfurases de arroz [Oryza sativa (L.)] e soja [Glycine max (L.) Merril]

Heis, Marta Dalpian January 2011 (has links)
Os agrupamentos ferro-enxofre [Fe-S] são grupos prostéticos requeridos em processos essenciais como respiração, fotossíntese, reações metabólicas, sinalização e regulação gênica. Em plantas, a biossíntese das proteínas Fe-S é compartimentalizada e adaptada às necessidades de uma célula eucariótica fotossintetizante. Diversos fatores ambientais afetam o desenvolvimento das plantas e limitam sua produtividade. Dentre esses organismos afetados encontram-se a soja e o arroz, culturas de grande importância comercial no Brasil e no mundo. Foram analisados, pelo método de RT-qPCR, os perfis de expressão dos genes que codificam a enzima cisteína desulfurase NFS1 e NFS2 de ambas as espécies, participantes da rota de formação dos cofatores [Fe-S] mitocondriais e plastídicos, respectivamente. Para Oryza sativa ssp. indica e ssp. japonica, as análises permitiram mostrar uma distribuição diferencial dos transcritos entre órgãos. OsNFS1 apresenta maiores níveis de transcritos tanto em raiz quanto em folha, enquanto OsNFS2 apresentou maiores níveis de transcritos em folha do que em raiz. A resposta destes genes ao frio (24 h a 4ºC) difere entre as subespécies. Na ssp. japonica, os dois genes são induzidos em ambos os tecidos. Para a ssp. indica há redução dos níveis de mRNA de NFS1 e aumento de NFS2 em folhas, e não há respostas em raízes. Nos tratamentos com alumínio na ssp. japonica, há redução dos níveis de mRNA de ambos os genes nas raízes, enquanto não há resposta na parte aérea. As análises em Glycine max, organismo que apresenta duplicação dos genes, permitiram demonstrar que a modulação destes é realizada de maneira diferencial. Em raiz, o tratamento com frio (5 h, 10 h e 24 h a 4ºC) promoveu a redução dos níveis de mRNA de uma das cópias de NFS1 e a indução da outra, enquanto os genes codificadores de NFS2 foram reprimidos. Em folha, o mesmo tratamento induziu uma das cópias de NFS1 e uma de NFS2, enquanto que as outras oscilaram em nível bem inferior de expressão. A exposição de G. max ao ácido salicílico induz a modulação dos genes mitocondriais, aumentando os níveis de mRNA em raízes e reprimindo-os em folhas. As análises dos cis-elementos permitiram mostrar a correlação destes com os dados encontrados em RT-qPCR. Desta maneira, tanto em arroz quanto em soja, a cisteína desulfurase parece ser modulada por diferentes estresses, possuindo padrões diferenciados conforme o órgão e o gene. / Iron-sulfur [Fe-S] clusters are prosthetic groups required to maintain life processes including respiration, photosynthesis, metabolic reactions, sensing, signaling and, gene regulation. In plants the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the eukaryotic and photosynthetic cell. Many environmental factors affect plant development and limit the productivity and the geographical distribution. Among those affected organisms are soybean and rice, crops with huge economic importance worldwide. Here we analyze the expression profile of cysteine desulfurase genes NFS1 and NFS2, involved in the biogenesis of [Fe-S] clusters in mitochondria and plastid, respectively, from both species, by RT-qPCR. Analysis of Oryza sativa ssp. indica and ssp. japonica showed a differential expression between organs, OsNFS1 has a higher expression in roots and leaves than OsNFS2, and OsNFS2 is more expressed in leaves than in roots. Rice subspecies exhibited different responsiveness to cold. The japonica ssp. increased transcript level from both genes in both organs, while ssp. indica decreased OsNFS1 and increased OsNFS2 expressions in leaves, and did not change the expression pattern in roots. Rice ssp. japonica showed a decrease in OsNFS1 and OsNFS2 transcript levels in root, while leaves did not change, under aluminum stress. Soybean analysis, which presents duplication of both genes, demonstrated particular transcript levels considering organ and stress response. GmNFS1 had a high expression in roots, while GmNFS2 did not differ between organs. Cold-treated plants (0, 5, 10 and 24h at 4°C) showed a decrease in cysteine desulfurases transcript level in roots, and an increase in leaves. Plants treated with salicylic acid increased GmNFS1 transcript level in roots, and decreased in leaves. Besides that, an analysis of promoter regions showed the presence of different cis-elements among cysteine desulfurase genes, corroborating with differential expression of each loci. Our results suggest that cysteine desulfurases, in rice and soybean, may be involved in stress response, being modulated by different stimuli according to organ and gene.
2

Caracterização das cisteína desulfurases de arroz [Oryza sativa (L.)] e soja [Glycine max (L.) Merril]

Heis, Marta Dalpian January 2011 (has links)
Os agrupamentos ferro-enxofre [Fe-S] são grupos prostéticos requeridos em processos essenciais como respiração, fotossíntese, reações metabólicas, sinalização e regulação gênica. Em plantas, a biossíntese das proteínas Fe-S é compartimentalizada e adaptada às necessidades de uma célula eucariótica fotossintetizante. Diversos fatores ambientais afetam o desenvolvimento das plantas e limitam sua produtividade. Dentre esses organismos afetados encontram-se a soja e o arroz, culturas de grande importância comercial no Brasil e no mundo. Foram analisados, pelo método de RT-qPCR, os perfis de expressão dos genes que codificam a enzima cisteína desulfurase NFS1 e NFS2 de ambas as espécies, participantes da rota de formação dos cofatores [Fe-S] mitocondriais e plastídicos, respectivamente. Para Oryza sativa ssp. indica e ssp. japonica, as análises permitiram mostrar uma distribuição diferencial dos transcritos entre órgãos. OsNFS1 apresenta maiores níveis de transcritos tanto em raiz quanto em folha, enquanto OsNFS2 apresentou maiores níveis de transcritos em folha do que em raiz. A resposta destes genes ao frio (24 h a 4ºC) difere entre as subespécies. Na ssp. japonica, os dois genes são induzidos em ambos os tecidos. Para a ssp. indica há redução dos níveis de mRNA de NFS1 e aumento de NFS2 em folhas, e não há respostas em raízes. Nos tratamentos com alumínio na ssp. japonica, há redução dos níveis de mRNA de ambos os genes nas raízes, enquanto não há resposta na parte aérea. As análises em Glycine max, organismo que apresenta duplicação dos genes, permitiram demonstrar que a modulação destes é realizada de maneira diferencial. Em raiz, o tratamento com frio (5 h, 10 h e 24 h a 4ºC) promoveu a redução dos níveis de mRNA de uma das cópias de NFS1 e a indução da outra, enquanto os genes codificadores de NFS2 foram reprimidos. Em folha, o mesmo tratamento induziu uma das cópias de NFS1 e uma de NFS2, enquanto que as outras oscilaram em nível bem inferior de expressão. A exposição de G. max ao ácido salicílico induz a modulação dos genes mitocondriais, aumentando os níveis de mRNA em raízes e reprimindo-os em folhas. As análises dos cis-elementos permitiram mostrar a correlação destes com os dados encontrados em RT-qPCR. Desta maneira, tanto em arroz quanto em soja, a cisteína desulfurase parece ser modulada por diferentes estresses, possuindo padrões diferenciados conforme o órgão e o gene. / Iron-sulfur [Fe-S] clusters are prosthetic groups required to maintain life processes including respiration, photosynthesis, metabolic reactions, sensing, signaling and, gene regulation. In plants the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the eukaryotic and photosynthetic cell. Many environmental factors affect plant development and limit the productivity and the geographical distribution. Among those affected organisms are soybean and rice, crops with huge economic importance worldwide. Here we analyze the expression profile of cysteine desulfurase genes NFS1 and NFS2, involved in the biogenesis of [Fe-S] clusters in mitochondria and plastid, respectively, from both species, by RT-qPCR. Analysis of Oryza sativa ssp. indica and ssp. japonica showed a differential expression between organs, OsNFS1 has a higher expression in roots and leaves than OsNFS2, and OsNFS2 is more expressed in leaves than in roots. Rice subspecies exhibited different responsiveness to cold. The japonica ssp. increased transcript level from both genes in both organs, while ssp. indica decreased OsNFS1 and increased OsNFS2 expressions in leaves, and did not change the expression pattern in roots. Rice ssp. japonica showed a decrease in OsNFS1 and OsNFS2 transcript levels in root, while leaves did not change, under aluminum stress. Soybean analysis, which presents duplication of both genes, demonstrated particular transcript levels considering organ and stress response. GmNFS1 had a high expression in roots, while GmNFS2 did not differ between organs. Cold-treated plants (0, 5, 10 and 24h at 4°C) showed a decrease in cysteine desulfurases transcript level in roots, and an increase in leaves. Plants treated with salicylic acid increased GmNFS1 transcript level in roots, and decreased in leaves. Besides that, an analysis of promoter regions showed the presence of different cis-elements among cysteine desulfurase genes, corroborating with differential expression of each loci. Our results suggest that cysteine desulfurases, in rice and soybean, may be involved in stress response, being modulated by different stimuli according to organ and gene.
3

Caracterização das cisteína desulfurases de arroz [Oryza sativa (L.)] e soja [Glycine max (L.) Merril]

Heis, Marta Dalpian January 2011 (has links)
Os agrupamentos ferro-enxofre [Fe-S] são grupos prostéticos requeridos em processos essenciais como respiração, fotossíntese, reações metabólicas, sinalização e regulação gênica. Em plantas, a biossíntese das proteínas Fe-S é compartimentalizada e adaptada às necessidades de uma célula eucariótica fotossintetizante. Diversos fatores ambientais afetam o desenvolvimento das plantas e limitam sua produtividade. Dentre esses organismos afetados encontram-se a soja e o arroz, culturas de grande importância comercial no Brasil e no mundo. Foram analisados, pelo método de RT-qPCR, os perfis de expressão dos genes que codificam a enzima cisteína desulfurase NFS1 e NFS2 de ambas as espécies, participantes da rota de formação dos cofatores [Fe-S] mitocondriais e plastídicos, respectivamente. Para Oryza sativa ssp. indica e ssp. japonica, as análises permitiram mostrar uma distribuição diferencial dos transcritos entre órgãos. OsNFS1 apresenta maiores níveis de transcritos tanto em raiz quanto em folha, enquanto OsNFS2 apresentou maiores níveis de transcritos em folha do que em raiz. A resposta destes genes ao frio (24 h a 4ºC) difere entre as subespécies. Na ssp. japonica, os dois genes são induzidos em ambos os tecidos. Para a ssp. indica há redução dos níveis de mRNA de NFS1 e aumento de NFS2 em folhas, e não há respostas em raízes. Nos tratamentos com alumínio na ssp. japonica, há redução dos níveis de mRNA de ambos os genes nas raízes, enquanto não há resposta na parte aérea. As análises em Glycine max, organismo que apresenta duplicação dos genes, permitiram demonstrar que a modulação destes é realizada de maneira diferencial. Em raiz, o tratamento com frio (5 h, 10 h e 24 h a 4ºC) promoveu a redução dos níveis de mRNA de uma das cópias de NFS1 e a indução da outra, enquanto os genes codificadores de NFS2 foram reprimidos. Em folha, o mesmo tratamento induziu uma das cópias de NFS1 e uma de NFS2, enquanto que as outras oscilaram em nível bem inferior de expressão. A exposição de G. max ao ácido salicílico induz a modulação dos genes mitocondriais, aumentando os níveis de mRNA em raízes e reprimindo-os em folhas. As análises dos cis-elementos permitiram mostrar a correlação destes com os dados encontrados em RT-qPCR. Desta maneira, tanto em arroz quanto em soja, a cisteína desulfurase parece ser modulada por diferentes estresses, possuindo padrões diferenciados conforme o órgão e o gene. / Iron-sulfur [Fe-S] clusters are prosthetic groups required to maintain life processes including respiration, photosynthesis, metabolic reactions, sensing, signaling and, gene regulation. In plants the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the eukaryotic and photosynthetic cell. Many environmental factors affect plant development and limit the productivity and the geographical distribution. Among those affected organisms are soybean and rice, crops with huge economic importance worldwide. Here we analyze the expression profile of cysteine desulfurase genes NFS1 and NFS2, involved in the biogenesis of [Fe-S] clusters in mitochondria and plastid, respectively, from both species, by RT-qPCR. Analysis of Oryza sativa ssp. indica and ssp. japonica showed a differential expression between organs, OsNFS1 has a higher expression in roots and leaves than OsNFS2, and OsNFS2 is more expressed in leaves than in roots. Rice subspecies exhibited different responsiveness to cold. The japonica ssp. increased transcript level from both genes in both organs, while ssp. indica decreased OsNFS1 and increased OsNFS2 expressions in leaves, and did not change the expression pattern in roots. Rice ssp. japonica showed a decrease in OsNFS1 and OsNFS2 transcript levels in root, while leaves did not change, under aluminum stress. Soybean analysis, which presents duplication of both genes, demonstrated particular transcript levels considering organ and stress response. GmNFS1 had a high expression in roots, while GmNFS2 did not differ between organs. Cold-treated plants (0, 5, 10 and 24h at 4°C) showed a decrease in cysteine desulfurases transcript level in roots, and an increase in leaves. Plants treated with salicylic acid increased GmNFS1 transcript level in roots, and decreased in leaves. Besides that, an analysis of promoter regions showed the presence of different cis-elements among cysteine desulfurase genes, corroborating with differential expression of each loci. Our results suggest that cysteine desulfurases, in rice and soybean, may be involved in stress response, being modulated by different stimuli according to organ and gene.
4

Structural and Functional Studies on Human Mitochondrial Iron-Sulfur Cluster Biosynthesis

Tsai, Chi-Lin 2011 May 1900 (has links)
Iron-sulfur (Fe-S) clusters are critical protein cofactors found in all life forms. In eukaryotes, a well-conserved biosynthetic pathway located in the mitochondria is used to assemble Fe-S clusters. Although proteins required for Fe-S cluster biosynthesis have been identified, their precise function and mechanism remain elusive. In this study, biochemical and biophysical methods are applied to understand molecular details for the core components of the human Fe-S cluster biosynthesis: Nfs1, Isd11, Isu2, and frataxin (Fxn). Nfs1 is a cysteine desulfurase that converts cysteine into alanine and transfers the sulfur to a scaffold protein Isu2 for Fe-S clusters. Fxn depletion is associated with the neurodegenerative disease Friedreich’s ataxia (FRDA), and results in a complicated phenotype that includes loss of Fe-S clusters. The results presented here provide the first in vitro evidence for a stable protein complex that exists in at least two forms: an inactive complex with Nfs1, Isd11, and Isu2 (SDU) components and an active form that also includes Fxn (SDUF). Fxn binding dramatically changes the catalytic efficiency (kcat/KM) of Nfs1 from 25 to 10,100 M-1s-1 and enhances the rate of Fe-S cluster biosynthesis 25 fold. Oxidizing conditions diminish the levels of both complex formation and Fxn-based activation, whereas Fe2 further stimulates Nfs1 activity. Mutagenesis coupled to enzyme kinetics indicate that one of the three conserved cysteines (C104) on Isu2 accepts the sulfane sulfur from Nfs1 and that this transfer event likely requires prior binding of Fxn. In vitro interrogation of FRDA I154F and W155R and related Fxn variants revealed the binding affinity to SDU followed the trend Fxn ~ I154F > W155F > W155A ~ W155R. The Fxn variants also have diminished ability to facilitate both sulfur transfer and Fe-S cluster assembly. Fxn crystallographic structures reveal specific rearrangements associated with the loss of function. Importantly, the weaker binding and lower activity of the W155R variant compared to I154F explains the earlier onset and more severe disease progression. Finally, these experimental results coupled with computational docking studies suggest a model for how human Fxn functions as an allosteric activator and triggers sulfur transfer and Fe-S cluster assembly.
5

Purification and Characterization of a Novel Selenocysteine Lyase from Enterococcus faecalis

Nelson, Samantha 01 January 2014 (has links)
A previous study identified Enterococcus faecalis as one of two bacteria known to have the selD gene and other selenium related genes without having the genes necessary to make selenocysteine or selenouridine. EF2570, a gene in the cluster, was later shown to be upregulated during biofilm formation and also responsible for a selenite- and molybdate-dependent increase in biofilm formation in vitro. The protein encoded was identified as a selenium dependent molybdenum hydroxylase (SDMH), enzymes that contain a labile selenium atom required for activity. While the process of inserting selenocysteine into a protein is well known, the process by which a SDMH acquires a labile selenium atom has not yet been described. To begin unraveling this pathway, the nifS-like EF2568 from the gene cluster will be characterized. Some NifS-like proteins have been shown to have selenocysteine lyase activity, providing a source of selenium for selenophosphate synthetase, the selD gene product. Study of EF2568 has shown that it specifically reacts with L-selenocysteine to form selenide and alanine with L-cysteine inhibiting the reaction. Guided by homology to the well-characterized human and E. coli NifS-like proteins, mutants of the active site and substrate discerning residues were also characterized for activity with L-selenocysteine and L-cysteine. While mutation of the residue at position 112 thought to be responsible for substrate specificity did not affect reactivity of the enzyme with L-cysteine, it did affect reactivity with L-selenocysteine. Studying the characteristics of this novel group II selenocysteine lyase will provide a foundation for studying the remaining pathway.
6

Etude du rôle de la frataxine bactérienne CyaY chez Escherichia coli / Study of bacterial frataxin CyaY in Escherichia coli

Roche, Béatrice 01 December 2015 (has links)
Les protéines à centre Fe-S sont impliquées dans de nombreux processus cellulaires. In vivo, la formation des centres Fe-S est réalisée par des machineries multi-protéiques dont ISC et SUF, conservées chez les eucaryotes et les procaryotes. D’autres composants participent à la formation des centres Fe-S chez les eucaryotes, comme la frataxine (FXN). La FXN est une protéine présente chez l’homme, les plantes, la levure ou encore les bactéries à Gram négatif. Chez les eucaryotes, l’absence de FXN conduit à des phénotypes drastiques comme une accumulation de fer dans la mitochondrie, une diminution drastique de l’activité d’enzymes à centre Fe-S ou encore des dommages oxydatifs. Chez l’homme, un déficit en FXN est responsable d’une maladie neurodégénérative, l’ataxie de Friedreich. A la différence des eucaryotes, chez les procaryotes comme Escherichia coli, l’absence de CyaY, homologue bactérien de la FXN, ne conduit à aucun des phénotypes évoqués ci-dessus.Durant ma thèse, je me suis intéressée au rôle de CyaY chez E. coli. J’ai montré que, in vivo, CyaY favorise la formation des centres Fe-S via la machinerie ISC. Un lien génétique entre CyaY et IscX a également pu être établi, montrant que ces deux protéines participent à la formation des centres Fe-S in vivo. Je me suis ensuite intéressée aux bases moléculaires pouvant expliquer la différence entre les phénotypes liés à l’absence de FXN chez les eucaryotes et les procaryotes. J’ai montré que le résidu 108 de IscU joue un rôle clé pour la dépendance de CyaY. Enfin, pour mieux comprendre le rôle de CyaY chez E. coli, j’ai réalisé une approche globale en caractérisant le transcriptome du mutant ∆cyaY. / Fe-S cluster containing proteins are involved in many cellular processes such as respiration, DNA repair or gene regulation. In vivo, Fe-S cluster biogenesis is catalysed by specific protein machineries, ISC and SUF, conserved in both eukaryotes and prokaryotes. Frataxin (FXN) is a small protein found in humans, plants, yeast and Gram negative bacteria. In eukaryotes, a defect in FXN leads to drastic phenotypes such as mitochondrial iron accumulation, drastic decrease of Fe-S cluster protein activity, sensitivity to oxidants. In humans, FXN deficiency is responsible for the neurodegenerative disease, Friedreich’s ataxia. In prokaryotes like E. coli, a defect in CyaY, the bacterial FXN homolog, does not lead to significant phenotypes compared to the wild-type strain. During my thesis, I investigated the role of the bacterial FXN CyaY in E. coli. I showed that, in vivo, CyaY assisted the ISC-catalyzed Fe-S cluster biogenesis. A genetic link was also observed between cyaY and iscX, demonstrating that these proteins participate in Fe-S cluster biogenesis. In a second part, I investigated the differences between the impact of the eukaryotic versus prokaryotic FXN. I showed that the IscU 108th residue is crucial for the CyaY-dependency. Finally, I used a transcriptomic approach to test whether CyaY has a global role in E. coli.

Page generated in 0.0749 seconds