Spelling suggestions: "subject:"detecção e diagnóstico dde falhas"" "subject:"detecção e diagnóstico dee falhas""
1 |
Detecção e Diagnóstico de Falhas com Redes Neurais sem PesosOliveira, José Carlos 20 April 2018 (has links)
Submitted by José Carlos Oliveira (jcarlos.jeq@hotmail.com) on 2018-07-25T17:12:40Z
No. of bitstreams: 1
Tese_Final_José_Carlos_Martins_Oliveira.pdf: 4601437 bytes, checksum: e063bb6da481b557eeb5ce50666f37fe (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2018-08-03T12:12:58Z (GMT) No. of bitstreams: 1
Tese_Final_José_Carlos_Martins_Oliveira.pdf: 4601437 bytes, checksum: e063bb6da481b557eeb5ce50666f37fe (MD5) / Made available in DSpace on 2018-08-03T12:12:58Z (GMT). No. of bitstreams: 1
Tese_Final_José_Carlos_Martins_Oliveira.pdf: 4601437 bytes, checksum: e063bb6da481b557eeb5ce50666f37fe (MD5) / CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) e CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) pelo apoio financeiro. / Sistemas de detecção e diagnóstico de falhas (FDD - Fault Detection and Diagnosis) têm sido largamente utilizados em processos industriais. A necessidade de detecção antecipada e segura de falhas em sistemas dinâmicos e reais provocou uma demanda crescente por processos de supervisão que integram os sistemas FDD. Neste contexto, o objetivo principal desta tese é abordar o problema de detecção e diagnóstico de falhas em problemas dinâmicos univariável e multivariáveis com base nas Redes Neural Sem Pesos (RNSP). As RNSP utilizam neurônios baseados em dispositivos de memórias RAM (Random Access Memories, memórias de acesso randômico ou aleatório) para o aprendizado das características intrínsecas nos dados de treinamento. Essas redes apresentam algoritmos de aprendizagem rápidos e flexíveis, precisão e consistência nos resultados, sem a necessidade de geração de resíduos e retreinamento das redes e um potencial elevado para o reconhecimento e classificação de padrões. Como resultado da pesquisa realizada, são propostos três sistemas de detecção e diagnóstico de falhas baseados no modelo neural sem pesos, conhecido como dispositivo WiSARD (Wilkie, Stonham e Aleksander’s Recognition Device, dispositivo de reconhecimento de Wilkie, Stonham e Aleksander). Os sistemas propostos contam também com as contribuições da seleção de atributos, de modelos estatísticos básicos e da lógica fuzzy para a formação dos padrões comportamentais apresentados às RSNP usadas. Para a validação dos sistemas propostos foram testados três estudos de caso. Um deles se refere a um problema real univariável com dados obtidos pelos sensores de temperatura do compressor de gás para a venda em uma Unidade de Processamento de Gás Natural (UPGN) da Petrobras, localizada no município de Pojuca na Bahia (UPGN-3-Bahia). O segundo simula uma planta industrial considerada como um benchmark na área de detecção e diagnóstico de falhas, e conhecida como Tennessee Eastman Process (TEP). O terceiro e último estudo de caso simula um reator tanque agitado continuamente (CSTR, Continuous Stirred Tank Reactor, reator tanque agitado continuamente). Os resultados apresentados comprovam a boa adaptação das RNSP para o problema de detecção e diagnóstico de falhas, com percentuais de acertos, na classificação, acima de 98%. / Fault Detection and Diagnosis (FDD) systems have been widely used in industrial processes. The need of detection anticipated and secure of failure in dynamic and real systems provoke to a growing demand for supervisory processes that integrate FDD systems. In this context, the main objective of this thesis is to approach the problem of detecting and diagnosing failures in univariate and multivariate dynamic problems based on Weightless Neural Networks (WNN). The RNSP uses neurons based on RAM (Random Access Memories) devices to learn the intrinsic characteristics in the training data. These networks use fast and flexible learning algorithms, which provide accurate and consistent results, without the need for residual generation or network retraining, and therefore they have great potential use for pattern recognition and classification. As result of the research, three systems of fault detection and diagnosis based on the weightless neural model, known as WiSARD device (Wilkie, Stonham e Aleksander’s Recognition Device, dispositivo de reconhecimento de Wilkie, Stonham e Aleksander) are proposed. The proposed systems also count with the contributions of the attribute selection, basic statistical models and fuzzy logic for the formation of behavioral patterns presented to the RSNP used. For the validation of the proposed systems, three case studies were tested. One of them refers to a real univariate problem with data obtained by temperature sensors of the gas of sale compressor of a Petrobras Natural Gas Processing Unit (NGPU) located in the city of Pojuca in Bahia (NGPU-3, Bahia). The second simulates an industrial plant considered as a benchmark in the area of fault detection and diagnosis and known as the Tennessee Eastman Process (TEP). The third and final case study simulates a continuous stirred tank reactor (CSTR, Continuous Stirred Tank Reactor). The results show the good adaptation of the RNSP to the problem of detection and diagnosis of failures with percentage of correctness in the classification above 98%.
|
2 |
Aplicação e comparação de técnicas de diagnóstico e detecção de falhas em motores elétricos de indução baseados em assinatura de corrente / Application and comparison of diagnostic and fault detection techniques in electrical induction motors based on current signatureFontes, Abrahão da Silva 31 January 2017 (has links)
The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this work, these techniques are applied and compared on real motors, which have the faults of eccentricity in the air-gap, inter-turn short circuit and broken bars. It was used a theoretical model of an electric induction motor without fault and with the same voltage supply in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the faults above mentioned. / Os motores elétricos de indução são utilizados em todo o mundo nos mais variados ramos industriais. Diversas técnicas de manutenção são aplicadas para aumentar o tempo de operação e a vida útil destes motores. No contexto da manutenção preditiva, técnicas como Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park’s Vector Approach (PVA) e Park’s Vector Square Modulus (PVSM) são utilizadas para detectar e diagnosticar falhas em motores elétricos, caracterizadas por padrões no espectro de frequência da corrente estatórica. Neste trabalho, estas técnicas são aplicadas e comparadas em motores reais, os quais apresentam as falhas de excentricidade no entreferro, curto circuito entre espiras e barras quebradas. Utilizou-se um modelo teórico de um motor elétrico de indução sem falhas, com a mesma tensão de suprimento, com o objetivo de auxiliar a comparação entre os padrões do espectro de frequência de corrente estatórica com e sem falhas. Foram propostas e aplicadas métricas que avaliam a sensibilidade de cada técnica na detecção da falha. Os resultados apresentados neste trabalho mostraram que as técnicas acima mencionadas foram adequadas para as falhas supracitadas, cuja comparação entre estas evidenciou a adequabilidade de cada uma.
|
3 |
Detecção e diagnóstico de falhas em robôs manipuladores via redes neurais artificiais. / Fault detection and diagnosis in robotic manipulators via artificial neural networks.Tinós, Renato 11 February 1999 (has links)
Neste trabalho, um novo enfoque para detecção e diagnóstico de falhas (DDF) em robôs manipuladores é apresentado. Um robô com falhas pode causar sérios danos e pode colocar em risco o pessoal presente no ambiente de trabalho. Geralmente, os pesquisadores têm proposto esquemas de DDF baseados no modelo matemático do sistema. Contudo, erros de modelagem podem ocultar os efeitos das falhas e podem ser uma fonte de alarmes falsos. Aqui, duas redes neurais artificiais são utilizadas em um sistema de DDF para robôs manipuladores. Um perceptron multicamadas treinado por retropropagação do erro é usado para reproduzir o comportamento dinâmico do manipulador. As saídas do perceptron são comparadas com as variáveis medidas, gerando o vetor de resíduos. Em seguida, uma rede com função de base radial é usada para classificar os resíduos, gerando a isolação das falhas. Quatro algoritmos diferentes são empregados para treinar esta rede. O primeiro utiliza regularização para reduzir a flexibilidade do modelo. O segundo emprega regularização também, mas ao invés de um único termo de penalidade, cada unidade radial tem um regularização individual. O terceiro algoritmo emprega seleção de subconjuntos para selecionar as unidades radiais a partir dos padrões de treinamento. O quarto emprega o mapa auto-organizável de Kohonen para fixar os centros das unidades radiais próximos aos centros dos aglomerados de padrões. Simulações usando um manipulador com dois graus de liberdade e um Puma 560 são apresentadas, demostrando que o sistema consegue detectar e diagnosticar corretamente falhas que ocorrem em conjuntos de padrões não-treinados. / In this work, a new approach for fault detection and diagnosis in robotic manipulators is presented. A faulty robot could cause serious damages and put in risk the people involved. Usually, researchers have proposed fault detection and diagnosis schemes based on the mathematical model of the system. However, modeling errors could obscure the fault effects and could be a false alarm source. In this work, two artificial neural networks are employed in a fault detection and diagnosis system to robotic manipulators. A multilayer perceptron trained with backpropagation algorithm is employed to reproduce the robotic manipulator dynamical behavior. The perceptron outputs are compared with the real measurements, generating the residual vector. A radial basis function network is utilized to classify the residual vector, generating the fault isolation. Four different algorithms have been employed to train this network. The first utilizes regularization to reduce the flexibility of the model. The second employs regularization too, but instead of only one penalty term, each radial unit has a individual penalty term. The third employs subset selection to choose the radial units from the training patterns. The forth algorithm employs the Kohonens self-organizing map to fix the radial unit center near to the cluster centers. Simulations employing a two link manipulator and a Puma 560 manipulator are presented, demonstrating that the system can detect and isolate correctly faults that occur in nontrained pattern sets.
|
4 |
Detecção e diagnóstico de falhas em robôs manipuladores via redes neurais artificiais. / Fault detection and diagnosis in robotic manipulators via artificial neural networks.Renato Tinós 11 February 1999 (has links)
Neste trabalho, um novo enfoque para detecção e diagnóstico de falhas (DDF) em robôs manipuladores é apresentado. Um robô com falhas pode causar sérios danos e pode colocar em risco o pessoal presente no ambiente de trabalho. Geralmente, os pesquisadores têm proposto esquemas de DDF baseados no modelo matemático do sistema. Contudo, erros de modelagem podem ocultar os efeitos das falhas e podem ser uma fonte de alarmes falsos. Aqui, duas redes neurais artificiais são utilizadas em um sistema de DDF para robôs manipuladores. Um perceptron multicamadas treinado por retropropagação do erro é usado para reproduzir o comportamento dinâmico do manipulador. As saídas do perceptron são comparadas com as variáveis medidas, gerando o vetor de resíduos. Em seguida, uma rede com função de base radial é usada para classificar os resíduos, gerando a isolação das falhas. Quatro algoritmos diferentes são empregados para treinar esta rede. O primeiro utiliza regularização para reduzir a flexibilidade do modelo. O segundo emprega regularização também, mas ao invés de um único termo de penalidade, cada unidade radial tem um regularização individual. O terceiro algoritmo emprega seleção de subconjuntos para selecionar as unidades radiais a partir dos padrões de treinamento. O quarto emprega o mapa auto-organizável de Kohonen para fixar os centros das unidades radiais próximos aos centros dos aglomerados de padrões. Simulações usando um manipulador com dois graus de liberdade e um Puma 560 são apresentadas, demostrando que o sistema consegue detectar e diagnosticar corretamente falhas que ocorrem em conjuntos de padrões não-treinados. / In this work, a new approach for fault detection and diagnosis in robotic manipulators is presented. A faulty robot could cause serious damages and put in risk the people involved. Usually, researchers have proposed fault detection and diagnosis schemes based on the mathematical model of the system. However, modeling errors could obscure the fault effects and could be a false alarm source. In this work, two artificial neural networks are employed in a fault detection and diagnosis system to robotic manipulators. A multilayer perceptron trained with backpropagation algorithm is employed to reproduce the robotic manipulator dynamical behavior. The perceptron outputs are compared with the real measurements, generating the residual vector. A radial basis function network is utilized to classify the residual vector, generating the fault isolation. Four different algorithms have been employed to train this network. The first utilizes regularization to reduce the flexibility of the model. The second employs regularization too, but instead of only one penalty term, each radial unit has a individual penalty term. The third employs subset selection to choose the radial units from the training patterns. The forth algorithm employs the Kohonens self-organizing map to fix the radial unit center near to the cluster centers. Simulations employing a two link manipulator and a Puma 560 manipulator are presented, demonstrating that the system can detect and isolate correctly faults that occur in nontrained pattern sets.
|
Page generated in 0.1058 seconds