• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novo nanocompósito ternário baseado em politiofeno, óxido de grafeno reduzido e dióxido de manganês para armazenamento de energia

Cremonezzi, Josué Marciano de Oliveira 06 December 2017 (has links)
Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-02-07T16:19:30Z No. of bitstreams: 2 Josue Marciano de Oliveira Cremonezzi.pdf: 6544192 bytes, checksum: fb97518f2526cb741d5ccdbd62f87b31 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-04-24T15:22:32Z (GMT) No. of bitstreams: 2 Josue Marciano de Oliveira Cremonezzi.pdf: 6544192 bytes, checksum: fb97518f2526cb741d5ccdbd62f87b31 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-04-24T15:22:32Z (GMT). No. of bitstreams: 2 Josue Marciano de Oliveira Cremonezzi.pdf: 6544192 bytes, checksum: fb97518f2526cb741d5ccdbd62f87b31 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-12-06 / Supercapacitors are present in almost all kinds of electronic devices that we use in our everyday lives. Applications in systems for storing energy generated from clean sources and for powering electric cars, computers and the new self-sufficient microdevices, require, however, a new generation of capacitive materials. It is necessary to develop supercapacitors with higher capacitive density, better rate capability and that maintain the capacitance over several cycles. To address this problem, a novel approach has shown to be promising: the combination of materials of different capacitive mechanisms in ternary composites. From this strategy, it has been observed that the synergy of three materials leads to higher capacitive properties. Thus, in this work will be presented a novel ternary nanocomposite based on polythiophene, reduced graphene oxide and manganese dioxide. Both the components and the nanocomposite were obtained through simple, economical and efficient chemical routes. Adaptations in the method of obtaining the reduced graphene oxide resulted in a higher quality material. Manganese dioxide has been synthesized by an innovative route that presents advantages over the most used ones. At the end, the synergy of the three components led to singular and enhanced properties of energy storage in the nanocomposite compared to the pure polythiophene: the capacitance was 230% higher than that of the polymer with improved cyclic stability in the first 100 cycles of charge and discharge. / Os supercapacitores estão presentes em praticamente todo tipo de dispositivos eletrônicos que utilizamos no nosso dia-a-dia. Aplicações em sistemas para armazenamento da energia gerada a partir de fontes limpas e para a alimentação de automóveis elétricos, computadores e dos novos microdispositivos autossuficientes, requerem, no entanto, uma nova geração de materiais capacitivos. É necessário desenvolver supercapacitores com maior densidade capacitiva, melhor razão de capacidade e que mantenham a capacitância ao longo de vários ciclos. Para resolver este problema uma nova abordagem tem se mostrado promissora: a combinação de materiais de diferentes mecanismos capacitivos em compósitos ternários. A partir desta estratégia, tem se observado que a sinergia de três materiais leva a propriedades capacitivas superiores. Sendo assim, neste trabalho será apresentado um nanocompósito ternário inédito baseado em politiofeno, óxido de grafeno reduzido e dióxido de manganês. Tanto os componentes quanto o nanocompósito foram obtidos por rotas químicas simples, econômicas e eficientes. Adaptações no método de obtenção do óxido de grafeno reduzido resultaram num material de qualidade superior. O dióxido de manganês foi sintetizado por uma rota inovadora que apresenta vantagens em relação às mais utilizadas. Ao final, a sinergia dos três componentes conferiu ao nanocompósito propriedades de armazenamento de energia singulares e melhoradas em comparação com o politiofeno puro: a capacitância foi 230% maior que a do polímero com maior estabilidade cíclica nos 100 primeiros ciclos de carga e descarga.
2

Estudo das propriedades eletrocatalíticas de óxidos de manganês puros ou modificados com cobre e bismuto para reação de redução de oxigênio em meio alcalino / Study of the electrocatalytic properties of pure manganese oxide or modified with copper and bismuth for oxygen reduction reaction in alkaline medium

Frejlich, Sara Walmsley 13 March 2015 (has links)
Catalisadores catódicos para aplicação em células a combustível alcalinas (AFCs) baseados em dióxido de manganês, como alternativa aos tradicionais catalisadores baseados em platina foram estudados no presente trabalho. O principal objetivo foi avaliar a viabilidade do uso de α-MnO2 através do estudo da atividade eletrocatalítica frente à reação de redução de oxigênio (RRO) do referido óxido em comparação com a atividade eletrocatalítica do material de referência baseado em platina, visando minimizar os elevados custos desses catalisadores que tornam muito restrita a comercialização das células a combustível apesar das vantagens comprovadas desse tipo de tecnologia. O uso de α-MnO2 para completa substituição da platina se mostrou viável por apresentar atividade catalítica comparável à da platina, e com a vantagem adicional de ser um material de menor custo devido à sua abundância. Estudos prévios demonstraram que a RRO catalisada pelo dióxido de manganês ocorre preferencialmente por duas vias: redução direta via quatro elétrons, ou redução por dois elétrons com formação de peróxido de hidrogênio como produto final. A redução direta via quatro elétrons é o mecanismo mais comum, seguido na maioria das estruturas cristalográficas, e é o mecanismo de reação de interesse para aplicação em células a combustível, sendo, portanto, o peróxido de hidrogênio um produto indesejável para esse tipo de aplicação. Foram promovidas modificações do referido óxido de manganês (α-MnO2) pela incorporação de metais não nobres (Cu e Bi) para estudar o impacto dessas modificações nas propriedades físico-químicas desses óxidos. Os resultados obtidos demonstraram que a dopagem com Cu não promoveu alterações significativas nas propriedades desses óxidos. Em contrapartida, a dopagem com bismuto promoveu resultados significativos. A incorporação de Bi3+ na estrutura cristalina do α-MnO2 promoveu o aumento da condutividade eletrônica desse óxido, permitindo assim a eliminação do suporte de carbono, ocasionando desse modo, a eliminação quase que total da formação de peróxido de hidrogênio. Dessa maneira, os resultados mostraram que no caso específico desse material dopado, a RRO se dá predominantemente pela redução direta via quatro elétrons. Os resultados apresentados no presente trabalho, demonstraram que a dopagem do α-MnO2 com Bi3+ resulta em um material bastante promissor como catalisador catódico de AFCs. / Cathode catalysts for application in alkaline fuel cells (AFCs) based on manganese dioxide as alternative to traditional platinum-based catalysts were studied in this work. The main objective was to evaluate the feasibility of using α-MnO2 through the study of electrocatalytic activity toward the oxygen reduction reaction (ORR) of said oxide compared to the electrocatalytic activity of platinum-based reference materials, aiming to cheapen the high costs of these catalysts that make very limited the marketing of fuel cells despite the proven benefits of such technology. The use of α-MnO2 as a complete substitution of platinum demonstrated to be viable due to its catalytic activity comparable with that of platinum, having the additional advantage of being a less costly material because of its abundance. Previous studies demonstrated that the ORR catalyzed by manganese dioxide takes place preferably in two ways: Direct reduction via four electrons or two electrons by reduction with formation of hydrogen peroxide as the final product. The direct reduction via four electrons is the most common mechanism, followed in most crystal structures, and the reaction mechanism is the one of interest for application in fuel cells. The production of hydrogen peroxide is undesirable for this type of application. Modifications of said manganese oxide (α-MnO2) by the incorporation of non-noble metals (Cu and Bi) were promoted to study the impact of these modifications on the physicochemical properties of these oxides. The results showed that doping with Cu did not cause significant changes in the properties of these oxides. By contrast, doping with bismuth promoted interesting and significant results. The incorporation of Bi3+ in a crystalline structure of α-MnO2 promoted the increase of the electronic conductivity of this oxide, thereby allowing the elimination of the carbon support, consequently causing the almost complete elimination of the formation of hydrogen peroxide. Thus, the results showed that in the specific case of this doped material, the ORR occurs predominantly by direct reduction via 4 electrons. The results presented in this study demonstrated that the α-MnO2 doped with Bi3+ showed a very promising cathode material for application in AFCs.
3

Estudo das propriedades eletrocatalíticas de óxidos de manganês puros ou modificados com cobre e bismuto para reação de redução de oxigênio em meio alcalino / Study of the electrocatalytic properties of pure manganese oxide or modified with copper and bismuth for oxygen reduction reaction in alkaline medium

Sara Walmsley Frejlich 13 March 2015 (has links)
Catalisadores catódicos para aplicação em células a combustível alcalinas (AFCs) baseados em dióxido de manganês, como alternativa aos tradicionais catalisadores baseados em platina foram estudados no presente trabalho. O principal objetivo foi avaliar a viabilidade do uso de α-MnO2 através do estudo da atividade eletrocatalítica frente à reação de redução de oxigênio (RRO) do referido óxido em comparação com a atividade eletrocatalítica do material de referência baseado em platina, visando minimizar os elevados custos desses catalisadores que tornam muito restrita a comercialização das células a combustível apesar das vantagens comprovadas desse tipo de tecnologia. O uso de α-MnO2 para completa substituição da platina se mostrou viável por apresentar atividade catalítica comparável à da platina, e com a vantagem adicional de ser um material de menor custo devido à sua abundância. Estudos prévios demonstraram que a RRO catalisada pelo dióxido de manganês ocorre preferencialmente por duas vias: redução direta via quatro elétrons, ou redução por dois elétrons com formação de peróxido de hidrogênio como produto final. A redução direta via quatro elétrons é o mecanismo mais comum, seguido na maioria das estruturas cristalográficas, e é o mecanismo de reação de interesse para aplicação em células a combustível, sendo, portanto, o peróxido de hidrogênio um produto indesejável para esse tipo de aplicação. Foram promovidas modificações do referido óxido de manganês (α-MnO2) pela incorporação de metais não nobres (Cu e Bi) para estudar o impacto dessas modificações nas propriedades físico-químicas desses óxidos. Os resultados obtidos demonstraram que a dopagem com Cu não promoveu alterações significativas nas propriedades desses óxidos. Em contrapartida, a dopagem com bismuto promoveu resultados significativos. A incorporação de Bi3+ na estrutura cristalina do α-MnO2 promoveu o aumento da condutividade eletrônica desse óxido, permitindo assim a eliminação do suporte de carbono, ocasionando desse modo, a eliminação quase que total da formação de peróxido de hidrogênio. Dessa maneira, os resultados mostraram que no caso específico desse material dopado, a RRO se dá predominantemente pela redução direta via quatro elétrons. Os resultados apresentados no presente trabalho, demonstraram que a dopagem do α-MnO2 com Bi3+ resulta em um material bastante promissor como catalisador catódico de AFCs. / Cathode catalysts for application in alkaline fuel cells (AFCs) based on manganese dioxide as alternative to traditional platinum-based catalysts were studied in this work. The main objective was to evaluate the feasibility of using α-MnO2 through the study of electrocatalytic activity toward the oxygen reduction reaction (ORR) of said oxide compared to the electrocatalytic activity of platinum-based reference materials, aiming to cheapen the high costs of these catalysts that make very limited the marketing of fuel cells despite the proven benefits of such technology. The use of α-MnO2 as a complete substitution of platinum demonstrated to be viable due to its catalytic activity comparable with that of platinum, having the additional advantage of being a less costly material because of its abundance. Previous studies demonstrated that the ORR catalyzed by manganese dioxide takes place preferably in two ways: Direct reduction via four electrons or two electrons by reduction with formation of hydrogen peroxide as the final product. The direct reduction via four electrons is the most common mechanism, followed in most crystal structures, and the reaction mechanism is the one of interest for application in fuel cells. The production of hydrogen peroxide is undesirable for this type of application. Modifications of said manganese oxide (α-MnO2) by the incorporation of non-noble metals (Cu and Bi) were promoted to study the impact of these modifications on the physicochemical properties of these oxides. The results showed that doping with Cu did not cause significant changes in the properties of these oxides. By contrast, doping with bismuth promoted interesting and significant results. The incorporation of Bi3+ in a crystalline structure of α-MnO2 promoted the increase of the electronic conductivity of this oxide, thereby allowing the elimination of the carbon support, consequently causing the almost complete elimination of the formation of hydrogen peroxide. Thus, the results showed that in the specific case of this doped material, the ORR occurs predominantly by direct reduction via 4 electrons. The results presented in this study demonstrated that the α-MnO2 doped with Bi3+ showed a very promising cathode material for application in AFCs.

Page generated in 0.0897 seconds