• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Probabilistic Morphological Analyzer for Syriac

McClanahan, Peter J. 08 July 2010 (has links) (PDF)
We show that a carefully crafted probabilistic morphological analyzer significantly outperforms a reasonable, naive baseline for Syriac. Syriac is an under-resourced Semitic language for which there are no available language tools such as morphological analyzers. Such tools are widely used to contribute to the process of annotating morphologically complex languages. We introduce and connect novel data-driven models for segmentation, dictionary linkage, and morphological tagging in a joint pipeline to create a probabilistic morphological analyzer requiring only labeled data. We explore the performance of this model with varying amounts of training data and find that with about 34,500 tokens, it can outperform the baseline trained on over 99,000 tokens and achieve an accuracy of just over 80%. When trained on all available training data, this joint model achieves 86.47% accuracy — a 29.7% reduction in error rate over the baseline.
2

Interactive Machine Assistance: A Case Study in Linking Corpora and Dictionaries

Black, Kevin P 01 November 2015 (has links) (PDF)
Machine learning can provide assistance to humans in making decisions, including linguistic decisions such as determining the part of speech of a word. Supervised machine learning methods derive patterns indicative of possible labels (decisions) from annotated example data. For many problems, including most language analysis problems, acquiring annotated data requires human annotators who are trained to understand the problem and to disambiguate among multiple possible labels. Hence, the availability of experts can limit the scope and quantity of annotated data. Machine-learned pre-annotation assistance, which suggests probable labels for unannotated items, can enable expert annotators to work more quickly and thus to produce broader and larger annotated resources more cost-efficiently. Yet, because annotated data is required to build the pre-annotation model, bootstrapping is an obstacle to utilizing pre-annotation assistance, especially for low-resource problems where little or no annotated data exists. Interactive pre-annotation assistance can mitigate bootstrapping costs, even for low-resource problems, by continually refining the pre-annotation model with new annotated examples as the annotators work. In practice, continually refining models has seldom been done except for the simplest of models which can be trained quickly. As a case study in developing sophisticated, interactive, machine-assisted annotation, this work employs the task of corpus-dictionary linkage (CDL), which is to link each word token in a corpus to its correct dictionary entry. CDL resources, such as machine-readable dictionaries and concordances, are essential aids in many tasks including language learning and corpus studies. We employ a pipeline model to provide CDL pre-annotations, with one model per CDL sub-task. We evaluate different models for lemmatization, the most significant CDL sub-task since many dictionary entry headwords are usually lemmas. The best performing lemmatization model is a hybrid which uses a maximum entropy Markov model (MEMM) to handle unknown (novel) word tokens and other component models to handle known word tokens. We extend the hybrid model design to the other CDL sub-tasks in the pipeline. We develop an incremental training algorithm for the MEMM which avoids wasting previous computation as would be done by simply retraining from scratch. The incremental training algorithm facilitates the addition of new dictionary entries over time (i.e., new labels) and also facilitates learning from partially annotated sentences which allows annotators to annotate words in any order. We validate that the hybrid model attains high accuracy and can be trained sufficiently quickly to provide interactive pre-annotation assistance by simulating CDL annotation on Quranic Arabic and classical Syriac data.

Page generated in 0.0623 seconds