Spelling suggestions: "subject:"dietary carbohydrate""
1 |
Dental caries and sugar-containing products analytical studies in teenagers /Sundin, Birgitta. January 1994 (has links)
Thesis (Ph. D.)--Lund University, 1994. / Published in conjunction with Department of Cariology, Faculty of Odontology, Göteborg University. Includes bibliographical references.
|
2 |
The extent and content of outdoor advertisements for sugar-sweetened beverages and fast foods in SowetoBoyd, Shannon 26 March 2015 (has links)
A research report submitted to the School of Public Health,
Faculty of Health Sciences, University of Witwatersrand in partial fulfillment of the requirements for the degree of Master of Public Health.
20 October 2014 / Background: Health experts are calling sugar the new tobacco (Action on Sugar, 2014). The WHO recently revised its recommendations for a maximum daily limit on sugar intake of 25 grams. Yet a 2012 study showed that South African children and adolescents are consuming up to 50 grams and 100 grams per day respectively (Steyn et al., 2003). Sugar is now recognized for its role, not only in promoting caries, obesity and diabetes, but also in the development of cancers. The World Cancer Report 2014, warns of a ‘cancer tidal wave’ over the next 20 years (IARC, 2014) Health promotion alone is insufficient; drawing on the example of tobacco control, such as advertising restrictions, legislation is the key to prevention. The sugar-sweetened beverage (SSB) industry is the leader among all sectors in marketing to young people (Arredondo et al., 2009), thus a similar approach is recommended for restricting SSB advertising to reduce chronic disease risk. There is no data regarding SSB advertising and obesogenic environments in South Africa. This pilot study is the first to describe the location, content and characteristics of outdoor print advertisements for SSBs and fast foods in South Africa.
Methodology: This is a secondary analysis of data collected as part of a larger 2013 study investigating the obesogenic environment in Soweto, South Africa. All visible outdoor advertising and branding of SSBs and fast food in a five-square kilometer demarcated area were included. Data on content, quantity, location, size and type of advertisements was collected in the field and a photograph was taken for further analysis. Comparisons were drawn to photographs of alcohol advertising in the same area. Data was captured using a coding sheet and was analysed descriptively and using inferential statistics. The advertisements included billboards, banners, posters, pole advertisements, painted signs, branded school signs, branded shop signs, directional signs and branded umbrellas and fridges. A total of 237 photographs were included in the study.
Results: The main findings of this study indicate a significant presence of advertising and branding for sugar-sweetened beverages in Soweto. SSB and fast food advertising and branding accounted for 62.86% of all advertising in the area under study. Of all SSB and fast food brands available in South Africa, Coca-Cola accounted for 86.58% of this advertising and branding. Unlike alcohol advertising, which is restricted to the locations in which alcohol is sold, advertising for SSBs is pervasive throughout the community, seen everywhere from shops and schools to transit stops and on street sides. Most SSB advertising and branding signage is medium or large in size. Images of people were only present in a small number of the adverts. However when people were present, they were consistently young people under the age of 35. The race of people in the adverts consistently represented the black African demographic of Soweto. While the main goal of the adverts appears to be product and brand recognition, there is a trend across the SSB adverts to convey messages of happiness, positivity, friendship, fun and well-being, suggesting that consumption of these products would lend to such outcomes for the consumer. A small percentage also promoted special deals to encourage product purchase.
Conclusion: SSB advertising in Soweto is extensive, far surpassing advertising for junk food or alcohol. The government should consider implementing legislation, to restrict SSB advertising. The country should also urgently move to adopt WHO’s new guidelines on the daily upper limit for sugar intake (Mann, 2012), and to limit SSB intake specifically, which should be reflected in revisions to South Africa’s food-based dietary guidelines. Further research should focus on the association between the high rate of exposure to SSB advertising in Soweto and the level of consumption of SSBs and on the understanding of the advertising environment and how this affects the health literacy of South African children and adolescents.
|
3 |
Dental caries and sugar-containing products analytical studies in teenagers /Sundin, Birgitta. January 1994 (has links)
Thesis (Ph. D.)--Lund University, 1994. / Published in conjunction with Department of Cariology, Faculty of Odontology, Göteborg University. Includes bibliographical references.
|
4 |
The effect of the high carbohydrate high fiber diet in the treatment of obese female diabeticsGoggans, Louise Elizabeth January 1982 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
|
5 |
Fuel kinetics during intense running and cycling when fed carbohydrateDerman, Kevin Dale January 1996 (has links)
On two occasions six competitive, male triathletes performed in random order, two experimental trials consisting of either a timed ride to exhaustion on a cycle-ergometer or a run to exhaustion on a motor-driven treadmill at 80% of their respective peak cycling and peak running oxygen uptakes (VO₂peak)- At the start of exercise, subjects drank 250 ml of a 15 g.100 ml⁻¹ w.v⁻¹ glucose solution with U-¹⁴C glucose added as tracer and, thereafter, 150 ml of the same solution every 15 min. Despite identical metabolic rates (VO₂ 3.51 ±0.06 vs. 3.51 ±0.10 l.min⁻¹; values are mean± SEM for the cycling and running trials, respectively), exercise times to exhaustion were significantly longer during cycling than running (96 ±14 vs. 63 ±11 min; P<0.05). The superior cycling than running endurance was not associated with any differences in either the rate of blood glucose oxidation (3.8 ±0.1 vs. 3.9 ±0.4 mmol.min⁻¹ ), nor the rate of ingested glucose oxidation (2.0 ± 0.1 vs. 1.7 ±0.2 mmol.min⁻¹) at the last common time point (40 min) before exhaustion, despite higher blood glucose concentrations at exhaustion during running than cycling (7.0 ±0.9 vs. 5.8 ±0.5 mmol.l⁻¹; P<0.05). However, the final rate of total CHO oxidation was significantly greater during cycling than running (24.0 ±0.8 vs. 21.7 ±1.4 mmol C6 .min⁻¹;P<0.01). At exhaustion, the estimated contribution to energy production from muscle glycogen had declined to similar extents in both cycling and running (68 ±3 vs. 65 ± 5%). These differences between the rates of total CHO oxidation and blood glucose oxidation suggested that the direct and/or indirect (via lactate) oxidation of muscle glycogen was greater in cycling than running.
|
6 |
Effect of high and low glycemic index meals on short-term recovery from prolonged, submaximal running and subsequent endurance capacity =: 運動後高、低血糖指數食物對短期恢復及再運動時耐力之影響. / 運動後高、低血糖指數食物對短期恢復及再運動時耐力之影響 / Effect of high and low glycemic index meals on short-term recovery from prolonged, submaximal running and subsequent endurance capacity =: Yun dong hou gao, di xue tang zhi shu shi wu dui duan qi hui fu ji zai yun dong shi nai li zhi ying xiang. / Yun dong hou gao, di xue tang zhi shu shi wu dui duan qi hui fu ji zai yun dong shi nai li zhi ying xiangJanuary 2000 (has links)
Fung Man-yi, Wendy. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 84-106). / Text in English; abstracts and appendices in English and Chinese. / Fung Man-yi, Wendy. / Acknowledgments --- p.i / Presentation --- p.iii / Abstract --- p.iv / Table of Contents --- p.viii / List of Tables --- p.x / List of Figures --- p.xi / Chapter CHAPTER ONE --- Introduction --- p.1 / Research Background --- p.1 / Purpose of the Study --- p.5 / Justification of the Study --- p.6 / Hypotheses --- p.6 / Definition of Terms --- p.7 / Assumptions --- p.8 / Delimitations --- p.8 / Limitations --- p.9 / Significance of the Study --- p.9 / Chapter CHAPTER TWO --- Review of Literature --- p.10 / "Engergy Metabolism During Prolonged, Submaximal Exercise" --- p.10 / "Causes of Fatigue During Prolonged, Submaximal Exercise" --- p.16 / Factors Influencing Muscle Glycogen Resynthesis During Recovery --- p.21 / Factors Influencing Rehydration During Recovery --- p.27 / Effect of Muscle Glycogen Replenishment During Recovery on Subsequent Endurance Capacity --- p.30 / Effect of Rehydration During Recovery on Subsequent Endurance Capacity --- p.32 / Effect of Glycemic Index Meals Before Exercise on Exercise Performance --- p.33 / Chapter CHAPTER THREE --- Methodology --- p.37 / Participants --- p.37 / Equipment and Instrumentation --- p.37 / Standardized Experimental Procedures --- p.38 / Collection and Analysis of Blood Samples --- p.42 / Preliminary Measurements --- p.45 / Dietary Analyses and Training Control --- p.50 / Preliminary Testing --- p.51 / Statistical Analysis --- p.54 / Chapter CHAPTER FOUR --- Results --- p.56 / Run Time to Exhaustion --- p.56 / Dietary Analysis --- p.57 / Postprandial Responses of the Test Meals During Screening Session --- p.58 / Postprandial Responses During Recovery --- p.60 / Responses During Exercise and Recovery --- p.62 / Body Mass Changes and Fluid Balance --- p.74 / Changes in Plasma Volume and Urine Volume --- p.75 / Summary of the Results --- p.76 / Chapter CHAPTER FIVE --- Discussion --- p.77 / Recommendations and Applications --- p.83 / References --- p.84 / Appendixes --- p.107
|
7 |
Effect of frequency of high glycemic index foods consumption on short-term recovery from prolonged exercise and subsequent endurance capacity =: 運動後進食高糖份指數食物的次數對短期恢復及再運動時耐力之影響. / 運動後進食高糖份指數食物的次數對短期恢復及再運動時耐力之影響 / Effect of frequency of high glycemic index foods consumption on short-term recovery from prolonged exercise and subsequent endurance capacity =: Yun dong hou jin shi gao tang fen zhi shu shi wu de ci shu dui duan qi hui fu ji zai yun dong shi nai li zhi ying xiang. / Yun dong hou jin shi gao tang fen zhi shu shi wu de ci shu dui duan qi hui fu ji zai yun dong shi nai li zhi ying xiangJanuary 2001 (has links)
Siu Ming Fai Parco. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 101-117). / Text in English; abstracts in English and Chinese. / Siu Ming Fai Parco. / Acknowledgments --- p.i / Abstract --- p.iii / Table of Contents --- p.vii / List of Tables --- p.ix / List of Figures --- p.x / Chapter CHAPTER ONE --- Introduction --- p.1 / Research Background --- p.1 / Purpose of the Study --- p.6 / Hypotheses --- p.6 / Definition of Terms --- p.7 / Assumptions --- p.8 / Delimitations --- p.9 / Limitations --- p.9 / Chapter CHAPTER TWO --- Review of Literature --- p.10 / Importance of Muscle Glycogen Resynthesis During Recovery from Exercise --- p.10 / Factors Affecting Muscle Glycogen Resynthesis --- p.10 / Muscle Glycogen Resynthesis and Subsequent Endurance Capacity --- p.17 / Importance of Rehydration on Recovery from exercise --- p.22 / Factors Affecting Rehydration --- p.22 / Rehydration and Subsequent Endurance Capacity --- p.25 / Glycemic Index Foods and Exercise --- p.26 / Definition of Glycemic Index (GI) --- p.26 / Ingestion of GI Foods Before Exercise --- p.28 / Ingestion of GI Foods During Recovery --- p.33 / Frequency of CHO Ingestion and Exercise --- p.36 / Chapter CHAPTER THREE --- Methodology --- p.39 / Participants --- p.39 / Equipment and Instrumentation --- p.39 / Preliminary Measurements --- p.40 / Dietary Analysis and Training Control --- p.45 / Preliminary Testing --- p.46 / Standardized Experimental Procedure --- p.51 / Collection and Analysis of Blood Sample --- p.57 / Statistical Analysis --- p.61 / Chapter CHAPTER FOUR --- Results --- p.62 / Run Time to Exhaustion --- p.63 / Dietary Analysis --- p.63 / Postprandial Responses of the Prescribed Foods During Screening Test --- p.64 / Postprandial Responses During Recovery of Main Trial --- p.67 / Metabolic and Physiological Responses During Exercise and Recovery --- p.70 / "Body Mass Change, Fluid Balance and Urine Volume" --- p.89 / Changes in Plasma Volume --- p.90 / Summary of the Results --- p.91 / Chapter CHAPTER FIVE --- Discussion --- p.92 / Recommendations and Applications --- p.99 / References --- p.101 / Appendices --- p.118
|
8 |
Effect of barley [beta]-glucans with different molecular weight on the proliferation and metabolism of bifidobacteria.January 2007 (has links)
Lee, Ying. / On t.p. "beta" appears as the Greek letter. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 171-196). / Abstracts in English and Chinese. / Thesis/Assessment Committee --- p.i / Acknowledgement --- p.ii / Abstract --- p.iii / 摘要 --- p.v / List of Tables --- p.vii / List of Figures --- p.x / List of Abbreviations --- p.xvii / Content --- p.xviii / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Probiotics and Prebiotics --- p.1 / Chapter 1.1.1 --- Definitions --- p.1 / Chapter 1.1.2 --- Previous studies --- p.2 / Chapter 1.1.3 --- Properties of enhanced prebiotics --- p.6 / Chapter 1.1.4 --- Synbiotics --- p.7 / Chapter 1.2 --- Colonic fermentation --- p.10 / Chapter 1.2.1 --- Major substrates and metabolites of colonic fermentation --- p.10 / Chapter 1.2.2 --- Health-related effects of Short-Chain Fatty Acids (SCFAs) --- p.12 / Chapter 1.3 --- Bifidogenic effect --- p.14 / Chapter 1.3.1 --- Definition of bifidogenic factor and its health benefits --- p.14 / Chapter 1.3.2 --- Carbohydrate metabolism by related enzymes of bifidobacteria --- p.16 / Chapter 1.3.3 --- Previous studies on bifidogenic effects of carbohydrates --- p.18 / Chapter 1.4 --- Barley β-glucan --- p.18 / Chapter 1.4.1 --- Cereal fibres as prebiotics --- p.18 / Chapter 1.4.2 --- Chemical and physical properties and related health impacts of barley β-glucan --- p.19 / Chapter 1.4.3 --- Impacts on intestinal microecology --- p.21 / Chapter 1.4.4 --- Previous studies on bifidogenic effects of barley β-glucan --- p.21 / Chapter 1.5 --- Methodology for evaluating prebiotic and bifidogenic effect --- p.22 / Chapter 1.5.1 --- In vivo animal models --- p.23 / Chapter 1.5.2 --- Human clinical study --- p.23 / Chapter 1.5.3 --- In vitro fermentation study --- p.24 / Chapter 1.5.3.1 --- Pure culture --- p.24 / Chapter 1.5.3.2 --- Mixed culture bacterial fermenters --- p.25 / Chapter 1.5.3.3 --- Continuous culture systems as in vitro gut models --- p.25 / Chapter 1.5.4 --- Advanced molecular techniques in quantifying intestinal bacteria --- p.26 / Chapter 1.6 --- Factors affecting bifidogenic effect --- p.30 / Chapter 1.6.1 --- Molecular weight --- p.30 / Chapter 1.6.2 --- Species difference --- p.31 / Chapter 1.7 --- Enzymatic activities involved in fermentation of β-glucan --- p.32 / Chapter 1.7.1 --- "Endo-1,3-1,4-(3-glucanase (Lichenase)" --- p.32 / Chapter 1.7.2 --- "Endo-l,4-β-Glucanase (Cellulase)" --- p.33 / Chapter 1.7.3 --- Enzymatic assays --- p.33 / Chapter 1.8 --- Project objectives --- p.36 / Chapter Chapter 2. --- Materials and Methods --- p.37 / Chapter 2.1 --- Materials --- p.37 / Chapter 2.1.1 --- "Trehalose, chitin and lactulose" --- p.37 / Chapter 2.1.2 --- Barley β-glucan --- p.37 / Chapter 2.1.3 --- Pure Bifidobacterium species of human origin --- p.39 / Chapter 2.2 --- Static batch culture fermentation using fecal inoculums --- p.39 / Chapter 2.2.1 --- Substrate preparation --- p.39 / Chapter 2.2.2 --- Human fecal inoculum preparation --- p.41 / Chapter 2.2.3 --- Inoculation of human fecal inoculums --- p.41 / Chapter 2.3 --- Static batch culture fermentation using pure culture of bifidobacteria --- p.42 / Chapter 2.3.1 --- Substrate preparation --- p.42 / Chapter 2.3.2 --- Cultivation of pure bifidobacterium cultures --- p.43 / Chapter 2.3.3 --- Inoculation of bifidobacterium culture --- p.44 / Chapter 2.3.4 --- Growth curve of Bifidobacterium species --- p.44 / Chapter 2.4 --- Dry matter and organic matter disappearance in batch fermentation --- p.47 / Chapter 2.5 --- Gas chromatographic (GC) determination of short-chain fatty acids (SCFAs) --- p.48 / Chapter 2.6 --- MTT assay --- p.51 / Chapter 2.7 --- Microbial identification and enumeration --- p.53 / Chapter 2.7.1 --- Fluorescent in situ hybridization --- p.53 / Chapter 2.7.1.1 --- Oligonucleotide probes for fluorescent in situ hybridization --- p.53 / Chapter 2.7.1.2 --- Cell fixation --- p.54 / Chapter 2.7.1.3 --- In situ hybridization --- p.55 / Chapter 2.7.1.4 --- Automated image analysis --- p.55 / Chapter 2.7.1.5 --- Quantification of bacteria --- p.57 / Chapter 2.7.2 --- Optical Density (OD) measurement --- p.58 / Chapter 2.7.3 --- Direct microscopic count --- p.59 / Chapter 2.8 --- Enzyme assays --- p.60 / Chapter 2.8.1 --- Enzyme extraction --- p.60 / Chapter 2.8.2 --- "Endo-1, 3:1, 4-β-glucanase (Lichenase)" --- p.61 / Chapter 2.8.2.1 --- Principle --- p.61 / Chapter 2.8.2.2 --- Preparation of substrate and assay solutions --- p.63 / Chapter 2.8.2.3 --- Enzyme assay procedures --- p.64 / Chapter 2.8.3 --- "Endo-l,4-β-Glucanase (Cellulase)" --- p.65 / Chapter 2.8.3.1 --- Principle --- p.65 / Chapter 2.8.3.2 --- Dissolution of substrate and preparation of assay solutions --- p.65 / Chapter 2.8.3.3 --- Enzyme assay procedures --- p.66 / Chapter 2.8.4 --- API@ ZYM kit --- p.67 / Chapter 2.8.4.1 --- Principle --- p.67 / Chapter 2.8.4.2 --- Specimen preparation --- p.68 / Chapter 2.8.4.3 --- "Preparation, inoculation and reading of the strips" --- p.70 / Chapter 2.9 --- Statistical analysis --- p.71 / Chapter Chapter 3 --- Results and Discussions --- p.72 / Chapter 3.1 --- Growth curves of Bifidobacterium species --- p.72 / Chapter 3.2 --- Batch in vitro fermentation using human fecal inoculum --- p.79 / Chapter 3.2.1 --- Dry matter and organic matter disappearance --- p.79 / Chapter 3.2.2 --- Colonic bacterial profile evaluated by FISH with CellC software --- p.81 / Chapter 3.2.2.1 --- Total colonic bacteria --- p.81 / Chapter 3.2.2.2 --- Bifidobacterial growth --- p.82 / Chapter 3.2.3 --- SCFA production --- p.86 / Chapter 3.2.3.1 --- Acetate --- p.88 / Chapter 3.2.3.2 --- Propionate --- p.89 / Chapter 3.2.3.3 --- Butyrate --- p.89 / Chapter 3.2.3.4 --- Total SCFA production --- p.90 / Chapter 3.2.3.5 --- Molar ratio of SCFAs --- p.92 / Chapter 3.3 --- In vitro fermentation of barley β-glucans with different molecular weight using pure culture of Bifidobacterium species --- p.95 / Chapter 3.3.1 --- Dry matter and organic matter disappearance --- p.96 / Chapter 3.3.2 --- Evaluation of bifidobacterial growth by optical density (OD) --- p.100 / Chapter 3.3.3 --- Time course study of SCFAs production --- p.109 / Chapter 3.3.3.1 --- "Total and individual SCFAs (Acetate, Propionate and Butyrate) production" --- p.109 / Chapter 3.3.4 --- Correlation between various parameters related to fermentation --- p.124 / Chapter 3.4 --- Enzymatic activities in 2 selected Bifidobacterium species during fermentation --- p.125 / Chapter 3.4.1 --- Dry matter and organic matter disappearance --- p.126 / Chapter 3.4.2 --- Bifidobacterial growth evaluated by direct microscopic count --- p.128 / Chapter 3.4.3 --- Time course study of SCFAs production --- p.131 / Chapter 3.4.3.1 --- "Total and individual SCFAs production (Acetate, Propionate and Butyrate)" --- p.131 / Chapter 3.4.3.2 --- MTT assay --- p.137 / Chapter 3.4.3.2.1 --- Effect of metabolites in the fermentation medium on the proliferation ofSW620 --- p.137 / Chapter 3.4.3.2.2 --- Effect of metabolites in the fermentation medium on the proliferation of Caco-2 --- p.145 / Chapter 3.4.4 --- Enzyme assays using commercial kits --- p.153 / Chapter 3.4.4.1 --- API @ZYM assay --- p.153 / Chapter 3.4.4.2 --- Efficiency of intra-cellular enzyme extraction using labiase --- p.156 / Chapter 3.4.5 --- Time course enzyme assays --- p.157 / Chapter 3.4.5.1 --- Lichenase activity assay --- p.157 / Chapter 3.4.5.2 --- Cellulase activity assay --- p.160 / Chapter Chapter 4. --- Conclusions and Future work --- p.168 / References --- p.171
|
9 |
From Food Preference to Craving : Behavioural Traits and Molecular MechanismsAlsiö, Johan January 2010 (has links)
Preference for palatable and energy-dense foods may be a risk factor for body weight gain and has both genetic and environmental components. Once obesity develops in an individual, weight loss is difficult to achieve. Indeed, obesity is often characterized by repeated attempts to reduce the overconsumption of energy-dense foods, followed by food craving and relapse to overconsumption. Relapse and loss of control over intake are observed also in drug addicts, and it has been shown that obesity and drug addiction not only share behavioural features but also neural circuitry, e.g. the mesolimbic dopamine pathway. In this thesis, we sought to investigate the mechanisms related to food preferences and craving using animal models previously used in addiction research. The risk of gaining weight may implicate behavioural traits and emotional states. We showed in rats that a risk-taking behavioural profile was associated both with increased preference for a high-fat (HF) diet and with increased motivational response to a palatable high-sucrose (HS) diet. Hypothalamic urocortin 2 expression was associated with the preference for the HF diet. We also tested the hypothesis that consumption of HS and HF diets separately or provided simultaneously (HFHS) affect anxiety-like behaviour and locomotion. Furthermore, we showed that withdrawal from HFHS food affects diet-induced obesity-prone (OP) and obesity-resistant (OR) animals differently. OP animals had increased motivation (craving) for HS food pellets as measured by the operant self-administration technique during withdrawal. Dopamine receptor expression in the striatum differed between OP and OR animals both at access to HFHS and during withdrawal. This strongly implicates dopaminergic signaling in the OP phenotype. In humans, food preferences may be monitored using questionnaires. We analyzed food preference data from parents of preschool children, and identified an inverse association of parental preference for high-fat high-protein food and overweight in children. In conclusion, we have employed animal models previously used in the addiction field to identify molecular mechanisms related both to food preference and vulnerability to obesity, and to food craving associated with withdrawal from palatable food. These findings add to our current understanding of obesity.
|
10 |
Effects of perioperative nutrition on insulin action in postoperative metabolism /Soop, Mattias, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 4 uppsatser.
|
Page generated in 0.0852 seconds