• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Schwarz Differentiability

Young, William G. 08 1900 (has links)
The primary purpose of this paper is to develop a rigorous study of the Schwarz derivative. This study will be based primarily on the comparison of the ordinary derivative to the Schwarz derivative.
2

Directly Differentiable Arcs

Bisztriczky, Tibor 11 1900 (has links)
Abstract Not Provided / Thesis / Master of Science (MSc)
3

Characteristic and Order for Polynomial Differentiability

Gupta, Meera 10 1900 (has links)
<p> A definition of polynomial differentiability of an arc in the real affine plane at a point is given. The differentiable points are classified with respect to the intersection and support properties of certain families of osculating polynomials. For a given point of an arc, these properties are used to define a certain n-tuple of integers, the characteristic of that point. It is shown that the polynomial order of polynomially differentiable interior point of an arc is at least as great as the sum of the digits of its characteristic.</p> / Thesis / Doctor of Philosophy (PhD)
4

Sufficient Criteria for Total Differentiability of a Real Valued Function of a Complex Variable in Rn an Extension of H. Rademacher's Result for R²

Matovsky, Veron Rodieck 08 1900 (has links)
This thesis provides sufficient conditions for total differentiability almost everywhere of a real-valued function of a complex variable defined on a bounded region in IRn. This thesis extends H. Rademacher's 1918 results in IR2 which culminated in total differentiability, to IRn
5

Diferenciabilidade em espaços de Hilbert de reprodução sobre a esfera / Differentiability in reproducing Kernel Hilbert space on the sphere

Jordão, Thaís 02 March 2012 (has links)
Um espaço de Hilbert de reprodução (EHR) é um espaço de Hilbert de funções construído de maneira específica e única a partir de um núcleo positivo definido. As funções do EHR tem a seguinte peculiaridade: seus valores podem ser reproduzidos através de uma operação elementar envolvendo a própria função, o núcleo gerador e o produto interno do espaço. Neste trabalho, consideramos EHR gerados por núcleos positivos definidos sobre a esfera unitária m-dimensional usual. Analisamos quais propriedades são herdadas pelos elementos do espaço, quando o núcleo gerador possui alguma hipótese de diferenciabilidade. A análise é elaborada em duas frentes: com a noção de diferenciabilidade usual sobre a esfera e com uma noção de diferenciabilidade definida por uma operação multiplicativa genérica. Esta última inclui como caso particular as derivadas fracionárias e a derivada forte de Laplace-Beltrami. Em cada um dos casos consideramos ainda propriedades específicas do mergulho do EHR em espaços de funções suaves definidos pela diferenciabilidade utilizada / A reproducing kernel Hilbert space (EHR) is a Hilbert space of functions constructed in a unique manner from a fixed positive definite generating kernel. The values of a function in a reproducing kernel Hilbert space can be reproduced through an elementary operation involving the function itself, the generating kernel and the inner product of the space. In this work, we consider reproducing kernel Hilbert spaces generated by a positive definite kernel on the usual m-dimensional sphere. The main goal is to analyze differentiability properties inherited by the functions in the space when the generating kernel carries a differentiability assumption. That is done in two different cases: using the usual notion of differentiability on the sphere and using another one defined through multiplicative operators. The second case includes the Laplace-Beltrami derivative and fractional derivatives as well. In both cases we consider specific properties of the embeddings of the reproducing kernel Hilbert space into spaces of smooth functions induced by notion of differentiability used
6

Diferenciabilidade em espaços de Hilbert de reprodução sobre a esfera / Differentiability in reproducing Kernel Hilbert space on the sphere

Thaís Jordão 02 March 2012 (has links)
Um espaço de Hilbert de reprodução (EHR) é um espaço de Hilbert de funções construído de maneira específica e única a partir de um núcleo positivo definido. As funções do EHR tem a seguinte peculiaridade: seus valores podem ser reproduzidos através de uma operação elementar envolvendo a própria função, o núcleo gerador e o produto interno do espaço. Neste trabalho, consideramos EHR gerados por núcleos positivos definidos sobre a esfera unitária m-dimensional usual. Analisamos quais propriedades são herdadas pelos elementos do espaço, quando o núcleo gerador possui alguma hipótese de diferenciabilidade. A análise é elaborada em duas frentes: com a noção de diferenciabilidade usual sobre a esfera e com uma noção de diferenciabilidade definida por uma operação multiplicativa genérica. Esta última inclui como caso particular as derivadas fracionárias e a derivada forte de Laplace-Beltrami. Em cada um dos casos consideramos ainda propriedades específicas do mergulho do EHR em espaços de funções suaves definidos pela diferenciabilidade utilizada / A reproducing kernel Hilbert space (EHR) is a Hilbert space of functions constructed in a unique manner from a fixed positive definite generating kernel. The values of a function in a reproducing kernel Hilbert space can be reproduced through an elementary operation involving the function itself, the generating kernel and the inner product of the space. In this work, we consider reproducing kernel Hilbert spaces generated by a positive definite kernel on the usual m-dimensional sphere. The main goal is to analyze differentiability properties inherited by the functions in the space when the generating kernel carries a differentiability assumption. That is done in two different cases: using the usual notion of differentiability on the sphere and using another one defined through multiplicative operators. The second case includes the Laplace-Beltrami derivative and fractional derivatives as well. In both cases we consider specific properties of the embeddings of the reproducing kernel Hilbert space into spaces of smooth functions induced by notion of differentiability used
7

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
8

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
9

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
10

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis

Al-Smail, Jamal Hussain January 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right. The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.

Page generated in 0.0865 seconds