Spelling suggestions: "subject:"differentiable""
11 |
Some Properties of the Beurling Correlation Function / Some Properties of the Beurling Correlation FunctionAlcántara Bode, Julio 25 September 2017 (has links)
We review properties of the Beurling correlation function related to differentiability and functional equations. The relevance of this function is due to the fact that some properties of the Riemann zeta function can be expressed interms of it. / Se repasan algunas propiedades de la función de correlación de Beurling, que sirven para expresar ciertas propiedades de la función zeta de Riemann.
|
12 |
Quasiconformal maps on a 2-step Carnot groupGardiner, Christopher James 17 July 2017 (has links)
No description available.
|
13 |
Analýza atraktorů zobecněných Newtonovských tekutin v 3d oblastech / Analýza atraktorů zobecněných Newtonovských tekutin v 3d oblastechŽabenský, Josef January 2011 (has links)
We investigate a system of nonlinear partial differential equations, specifically the so-called Ladyzhenskaya model, in three spatial dimensions. It will be shown that after inclusion of a perturbation of a higher order, the model exhibits a considerably better behavior, in particular it will become quite straightforward to prove differentiability of solutions with respect to the initial condition. Due to this fact we may consequently employ the method of Lyapunov exponents to estimate the fractal dimension of the exponential attractor. First, however, it will be necessary to show existence and uniqueness of solutions, improved regularity and existence of a compact invariant set for the entire system.
|
14 |
Núcleos positivos definidos em espaços 2-homogêneos / Positive definite kernels on two-point homogeneous spacesBarbosa, Victor Simões 26 July 2016 (has links)
Neste trabalho analisamos a positividade definida estrita de núcleos contínuos sobre um espaço compacto 2-homogêneo. R. Gangolli (1967) apresentou uma caracterização completa para os núcleos que são contínuos, isotrópicos e positivos definidos sobre um espaço compacto 2-homogêneo Md: a parte isotrópica do núcleo é uma série de Fourier uniformemente convergente, com coeficientes não negativos, em relação a certos polinômios de Jacobi atrelados a Md. Uma das contribuições de nosso trabalho é uma caracterização para a positividade definida estrita de tais núcleos, complementando a caracterização apresentada por Chen et al. (2003) no caso em que Md é uma esfera unitária de dimensão maior ou igual a 2. Outra contribuição do trabalho é uma extensão do resultado de Gangolli para núcleos sobre produtos cartesianos de espaços compactos 2-homogêneos, e a consequente caracterização para núcleos estritamente positivos definidos neste mesmo contexto. Por fim, a última contribuição do trabalho envolve a análise do grau de diferenciabilidade da parte isotrópica de um núcleo contínuo, isotrópico e positivo definido sobre Md e a aplicabilidade de tal análise em resultados envolvendo a positividade definida estrita. / In this work we analyze the strict positive definiteness of continuous kernels on compact two-point homogeneous spaces Md. R. Gangolli (1967) presented a complete characterization for continuous, isotropic and positive definite kernels on Md: the isotropic part of the kernel is a uniformly convergent Fourier series of certain Jacobi polynomials associated to Md, with nonnegative coefficients. One of the contributions of our work is a characterization for the strict positive definiteness of such kernels, completing that one presented by Chen et al. (2003) in the case Md is the unit sphere of dimension at least 2. Another contribuition of this work is an extension of Gangolli\'s result for kernels on a product of compact two-point homogeneous spaces, and the subsequent characterization of strict positive definiteness in this same context. Finally, the last contribution in this work involves the analysis of the differentiability of the isotropic part of a continuous, isotropic and positive definite kernel on Md and the applicability of such analysis in results involving the strict positive definiteness.
|
15 |
Diferentes noções de diferenciabilidade para funções definidas na esfera / Different notions of differentiability for functions defined on the sphereCastro, Mario Henrique de 01 March 2007 (has links)
Neste trabalho estudamos diferentes noções de diferenciabilidade para funções definidas na esfera unitária S^n-1 de R^n, n>=2. Em relação à derivada usual, encontramos condições necessárias e/ou suficientes para que uma função seja diferenciável até uma ordem fixada. Para as outras duas, a derivada forte de Laplace-Beltrami e a derivada fraca, apresentamos algumas propriedades básicas e procuramos condições que garantam a equivalência destas com a diferenciabilidade usual. / In this work we study different notions of differentiability for functions defined on the unit sphere S^n-1 of R^n, n>=2. With respect to the usual derivative, we find necessary and/or sufficient conditions in order that a function be differentiable up to a fixed order. As for the other two, the strong Laplace-Beltrami derivative and the weak derivative, we present some basic properties about them and search for conditions that guarantee the equivalence of them with the previous one.
|
16 |
Analyse et rectifiabilité dans les espaces métriques singuliers / Analysis and rectifiability in metric spaces with singular geometryMunnier, Vincent 14 September 2011 (has links)
Nous prouvons essentiellement, à partir du formalisme adopté dans les articles [Che] et [CK1], un théorème de di fférentiation de type Calderòn pour les applications des espaces de Hajlasz fondés sur des espaces métriques PI et à valeurs dans des espaces de Banach RNP. Grâce à toutes les techniques développées pour le théorème précédent, nous pouvons -par la suite- a ffaiblir la condition d'appartenance à un espace de Hajlasz surcritique (par rapport à la dimension homogène de l'espace métrique ambiant) en une condition d'intégrabilité locale sur la constante de Lipschitz ponctuelle supérieure. Nous montrons que ces théorèmes de di fférentiation entrent en jeu naturellement pour caractériser les espaces de Hajlasz fondés sur des espaces métriques PI. Ceci débouche sur des critères intégraux, dans la veine de [Br2], pour reconnaitre si des applications mesurables sont constantes ou non dans les espaces métriques PI. En fin, nous discutons certains types d'inégalités de Poincaré locales dépendant du centre et du rayon des boules. Dans ce cadre aff aibli, l'analyse menée précedemment est tout à fait possible mais sous des conditions topologiques et géométriques supplémentaires sur l'espace métrique ambiant. / In this thesis, we essentially prove the Cheeger-differentiability of some Hajlasz-Sobolev functions between PI metric spaces and RNP Banach spaces. Then, we prove a refinement. More precisely, we establish a kind of Rademacher-Stepanov Theorem in the same setting as above but under the simple condition that the upper lipschitz constant is in a Lp space. Then, all these differentiation Theorems are naturally used to give a precise and complete description of the Hajlasz-Sobolev spaces on PI metric spaces in term of an energy integral. This leads to some criteria to detect if a measurable function is constant or not. At the end, we discuss some topological consequences of some weak Poincaré inequalities, we mean that depend of the center and of the radius of the balls involved in these inequalities. In this context, we are able to give some new criteria but the price to pay is to suppose strong topological assumptions on the metric space.
|
17 |
Diferentes noções de diferenciabilidade para funções definidas na esfera / Different notions of differentiability for functions defined on the sphereMario Henrique de Castro 01 March 2007 (has links)
Neste trabalho estudamos diferentes noções de diferenciabilidade para funções definidas na esfera unitária S^n-1 de R^n, n>=2. Em relação à derivada usual, encontramos condições necessárias e/ou suficientes para que uma função seja diferenciável até uma ordem fixada. Para as outras duas, a derivada forte de Laplace-Beltrami e a derivada fraca, apresentamos algumas propriedades básicas e procuramos condições que garantam a equivalência destas com a diferenciabilidade usual. / In this work we study different notions of differentiability for functions defined on the unit sphere S^n-1 of R^n, n>=2. With respect to the usual derivative, we find necessary and/or sufficient conditions in order that a function be differentiable up to a fixed order. As for the other two, the strong Laplace-Beltrami derivative and the weak derivative, we present some basic properties about them and search for conditions that guarantee the equivalence of them with the previous one.
|
18 |
Núcleos positivos definidos em espaços 2-homogêneos / Positive definite kernels on two-point homogeneous spacesVictor Simões Barbosa 26 July 2016 (has links)
Neste trabalho analisamos a positividade definida estrita de núcleos contínuos sobre um espaço compacto 2-homogêneo. R. Gangolli (1967) apresentou uma caracterização completa para os núcleos que são contínuos, isotrópicos e positivos definidos sobre um espaço compacto 2-homogêneo Md: a parte isotrópica do núcleo é uma série de Fourier uniformemente convergente, com coeficientes não negativos, em relação a certos polinômios de Jacobi atrelados a Md. Uma das contribuições de nosso trabalho é uma caracterização para a positividade definida estrita de tais núcleos, complementando a caracterização apresentada por Chen et al. (2003) no caso em que Md é uma esfera unitária de dimensão maior ou igual a 2. Outra contribuição do trabalho é uma extensão do resultado de Gangolli para núcleos sobre produtos cartesianos de espaços compactos 2-homogêneos, e a consequente caracterização para núcleos estritamente positivos definidos neste mesmo contexto. Por fim, a última contribuição do trabalho envolve a análise do grau de diferenciabilidade da parte isotrópica de um núcleo contínuo, isotrópico e positivo definido sobre Md e a aplicabilidade de tal análise em resultados envolvendo a positividade definida estrita. / In this work we analyze the strict positive definiteness of continuous kernels on compact two-point homogeneous spaces Md. R. Gangolli (1967) presented a complete characterization for continuous, isotropic and positive definite kernels on Md: the isotropic part of the kernel is a uniformly convergent Fourier series of certain Jacobi polynomials associated to Md, with nonnegative coefficients. One of the contributions of our work is a characterization for the strict positive definiteness of such kernels, completing that one presented by Chen et al. (2003) in the case Md is the unit sphere of dimension at least 2. Another contribuition of this work is an extension of Gangolli\'s result for kernels on a product of compact two-point homogeneous spaces, and the subsequent characterization of strict positive definiteness in this same context. Finally, the last contribution in this work involves the analysis of the differentiability of the isotropic part of a continuous, isotropic and positive definite kernel on Md and the applicability of such analysis in results involving the strict positive definiteness.
|
19 |
Absolute continuity of the laws, existence and uniqueness of solutions of some SDEs and SPDEsYue, Wen January 2014 (has links)
This thesis consists of four parts. In the first part we recall some background theory that will be used throughout the thesis. In the second part, we studied the absolute continuity of the laws of the solutions of some perturbed stochastic differential equaitons(SDEs) and perturbed reflected SDEs using Malliavin calculus. Because the extra terms in the perturbed SDEs involve the maximum of the solution itself, the Malliavin differentiability of the solutions becomes very delicate. In the third part, we studied the absolute continuity of the laws of the solutions of the parabolic stochastic partial differential equations(SPDEs) with two reflecting walls using Malliavin calculus. Our study is based on Yang and Zhang \cite{YZ1}, in which the existence and uniqueness of the solutions of such SPDEs was established. In the fourth part, we gave the existence and uniqueness of the solutions of the elliptic SPDEs with two reflecting walls and general diffusion coefficients.
|
20 |
Algumas aplicações de jogos topológicos à análise / Some applications of topological games to analysisMaguiña, Juan Luis Jaisuño Fuentes 17 May 2018 (has links)
Neste trabalho apresentamos alguns jogos topológicos e suas aplicações à análise. Com esse fim, se fornece condições necessárias para que funções aproximadamente contínuas se tornem contínuas, se caracteriza os conjuntos estritamente pseudo-completos nos espaços de Banach e, assim também, se constrói um espaço de diferenciabilidade Gâteaux que não é Asplund fraco. / In this work we present some topological games and their applications to analysis. For this purpose, necessary conditions are given for nearly continuous functions to become continuous, we characterize the strictly pseudo-complete sets in the Banach spaces and we also construct a Gâteaux differentiability space that is not weak Asplund.
|
Page generated in 0.0871 seconds