171 |
Control-Induced Learning for Autonomous RobotsWanxin Jin (11013834) 23 July 2021 (has links)
<div>The recent progress of machine learning, driven by pervasive data and increasing computational power, has shown its potential to achieve higher robot autonomy. Yet, with too much focus on generic models and data-driven paradigms while ignoring inherent structures of control systems and tasks, existing machine learning methods typically suffer from data and computation inefficiency, hindering their public deployment onto general real-world robots. In this thesis work, we claim that the efficiency of autonomous robot learning can be boosted by two strategies. One is to incorporate the structures of optimal control theory into control-objective learning, and this leads to a series of control-induced learning methods that enjoy the complementary benefits of machine learning for higher algorithm autonomy and control theory for higher algorithm efficiency. The other is to integrate necessary human guidance into task and control objective learning, leading to a series of paradigms for robot learning with minimal human guidance on the loop.</div><div><br></div><div>The first part of this thesis focuses on the control-induced learning, where we have made two contributions. One is a set of new methods for inverse optimal control, which address three existing challenges in control objective learning: learning from minimal data, learning time-varying objective functions, and learning under distributed settings. The second is a Pontryagin Differentiable Programming methodology, which bridges the concepts of optimal control theory, deep learning, and backpropagation, and provides a unified end-to-end learning framework to solve a broad range of learning and control tasks, including inverse reinforcement learning, neural ODEs, system identification, model-based reinforcement learning, and motion planning, with data- and computation- efficient performance.</div><div><br></div><div>The second part of this thesis focuses on the paradigms for robot learning with necessary human guidance on the loop. We have made two contributions. The first is an approach of learning from sparse demonstrations, which allows a robot to learn its control objective function only from human-specified sparse waypoints given in the observation (task) space; and the second is an approach of learning from</div><div>human’s directional corrections, which enables a robot to incrementally learn its control objective, with guaranteed learning convergence, from human’s directional correction feedback while it is acting.</div><div><br></div> Read more
|
172 |
Anisotropic frameworks for dynamical systems and image processing / Anizotropna radna okruženja za dinamičke sisteme i obradu slikaStojanov Jelena 23 April 2015 (has links)
<p>The research topic of this PhD thesis is a comparative analysis of classical specic geometric frameworks and of their anisotropic extensions; the construction of three different types of Finsler frameworks, which are suitable for the analysis of the cancer cells population dynamical system; the development of the anisotropic Beltrami framework theory with the derivation of the evolution ow equations corresponding to different classes of anisotropic metrics, and tentative applications in image processing.</p> / <p>Predmet istraživanja doktorske disertacije je uporedna analiza klasičnih i specifičnih geometrijskih radnih okruženja i njihovih anizotropnih proširenja; konstrukcija tri Finslerova radna okruženja različitog tipa koja su pogodna za analizu dinamičkog sistema populacije kanceroznih ćelija; razvoj teorije anizotropnog Beltramijevog radnog okruženja i formiranje jednačina evolutivnog toka za različite klase anizotropnih metrika, kao i mogućnost primene dobijenih teorijskih rezultata u digitalnoj obradi slika.</p>
|
173 |
Simulation of Piecewise Smooth Differential Algebraic Equations with Application to Gas Networks / Aspects of Modelling, Algorithmic Treatment and Numerical AnalysisStreubel, Tom 10 June 2022 (has links)
Zuweilen wird gefördertes Erdgas als eine Brückentechnologie noch eine Weile erhalten bleiben, aber unsere Gasnetzinfrastruktur hat auch in einer Ära post-fossiler Brennstoffe eine Zukunft, um Klima-neutral erzeugtes Methan, Ammoniak oder Wasserstoff zu transportieren.
Damit die Dispatcher der Zukunft, in einer sich fortwährend dynamisierenden Marktsituation, mit sich beständig wechselnden Kleinstanbietern, auch weiterhin einen sicheren Gasnetzbetrieb ermöglichen und garantieren können, werden sie auf moderne, schnelle Simulations- sowie performante Optimierungstechnologie angewiesen sein. Der Schlüssel dazu liegt in einem besseren Verständnis zur numerischen Behandlung nicht differenzierbarer Funktionen und diese Arbeit möchte einen Beitrag hierzu leisten.
Wir werden stückweise differenzierbare Funktionen in sog. Abs-Normalen Form betrachten.
Durch einen Prozess, der Abs-Linearisierung genannt wird, können wir stückweise lineare Approximationsmodelle erster Ordnung, mittels Techniken der algorithmischen Differentiation erzeugen.
Jene Modelle können über Matrizen und Vektoren mittels gängiger Software-Bibliotheken der numerischen linearen Algebra auf Computersystemen ausgedrückt, gespeichert und behandelt werden.
Über die Generalisierung der Formel von Faà di Bruno können auch Splinefunktionen höherer Ordnung generiert werden, was wiederum zu Annäherungsmodellen mit besserer Güte führt.
Darauf aufbauend lassen sich gemischte Taylor-Kollokationsmethoden, darunter die mit Ordnung zwei konvergente generalisierte Trapezmethode, zur Integration von Gasnetzen, in Form von nicht glatten Algebro-Differentialgleichungssystemen, definieren.
Numerische Experimente demonstrieren das Potential.
Da solche implizite Integratoren auch nicht lineare und in unserem Falle zugleich auch stückweise differenzierbare Gleichungssysteme erzeugen, die es als Unterproblem zu lösen gilt, werden wir uns auch die stückweise differenzierbare, sowie die stückweise lineare Newtonmethode betrachten. / As of yet natural gas will remain as a bridging technology, but our gas grid infrastructure does have a future in a post-fossil fuel era for the transportation of carbon-free produced methane, ammonia or hydrogen.
In order for future dispatchers to continue to enable and guarantee safe gas network operations in a continuously changing market situation with constantly switching micro-suppliers, they will be dependent on modern, fast simulation as well as high-performant optimization technology. The key to such a technology resides in a better understanding of the numerical treatment of non-differentiable functions and this work aims to contribute here.
We will consider piecewise differentiable functions in so-called abs-normal form.
Through a process called abs-linearization, we can generate piecewise linear approximation models of order one, using techniques of algorithmic differentiation.
Those models can be expressed, stored and treated numerically as matrices and vectors via common software libraries of numerical linear algebra.
Generalizing the Faà di Bruno's formula yields higher order spline functions, which in turn leads to even higher order approximation models.
Based on this, mixed Taylor-Collocation methods, including the generalized trapezoidal method converging with an order of two, can be defined for the integration of gas networks represented in terms of non-smooth system of differential algebraic equations.
Numerical experiments will demonstrate the potential.
Since those implicit integrators do generate non-linear and, in our case, piecewise differentiable systems of equations as sub-problems, it will be necessary to consider the piecewise differentiable, as well as the piecewise linear Newton method in advance. Read more
|
174 |
Distributed Algorithms for Multi-robot AutonomyZehui Lu (18953791) 02 July 2024 (has links)
<p dir="ltr">Autonomous robots can perform dangerous and tedious tasks, eliminating the need for human involvement. To deploy an autonomous robot in the field, a typical planning and control hierarchy is used, consisting of a high-level planner, a mid-level motion planner, and a low-level tracking controller. In applications such as simultaneous localization and mapping, package delivery, logistics, and surveillance, a group of autonomous robots can be more efficient and resilient than a single robot. However, deploying a multi-robot team by directly aggregating each robot's planning hierarchy into a larger, centralized hierarchy faces challenges related to scalability, resilience, and real-time computation. Distributed algorithms offer a promising solution for introducing effective coordination within a network of robots, addressing these issues. This thesis explores the application of distributed algorithms in multi-robot systems, focusing on several essential components required to enable distributed multi-robot coordination, both in general terms and for specific applications.</p>
|
175 |
Programming tools for intelligent systemsConsidine, Breandan 04 1900 (has links)
Les outils de programmation sont des programmes informatiques qui aident les humains à programmer des ordinateurs. Les outils sont de toutes formes et tailles, par exemple les éditeurs, les compilateurs, les débogueurs et les profileurs. Chacun de ces outils facilite une tâche principale dans le flux de travail de programmation qui consomme des ressources cognitives lorsqu’il est effectué manuellement. Dans cette thèse, nous explorons plusieurs outils qui facilitent le processus de construction de systèmes intelligents et qui réduisent l’effort cognitif requis pour concevoir, développer, tester et déployer des systèmes logiciels intelligents. Tout d’abord, nous introduisons un environnement de développement intégré (EDI) pour la programmation d’applications Robot Operating System (ROS), appelé Hatchery (Chapter 2). Deuxièmement, nous décrivons Kotlin∇, un système de langage et de type pour la programmation différenciable, un paradigme émergent dans l’apprentissage automatique (Chapter 3). Troisièmement, nous proposons un nouvel algorithme pour tester automatiquement les programmes différenciables, en nous inspirant des techniques de tests contradictoires et métamorphiques (Chapter 4), et démontrons son efficacité empirique dans le cadre de la régression. Quatrièmement, nous explorons une infrastructure de conteneurs basée sur Docker, qui permet un déploiement reproductible des applications ROS sur la plateforme Duckietown (Chapter 5). Enfin, nous réfléchissons à l’état actuel des outils de programmation pour ces applications et spéculons à quoi pourrait ressembler la programmation de systèmes intelligents à l’avenir (Chapter 6). / Programming tools are computer programs which help humans program computers. Tools come in all shapes and forms, from editors and compilers to debuggers and profilers. Each of these tools facilitates a core task in the programming workflow which consumes cognitive resources when performed manually. In this thesis, we explore several tools that facilitate the process of building intelligent systems, and which reduce the cognitive effort required to design, develop, test and deploy intelligent software systems. First, we introduce an integrated development environment (IDE) for programming Robot Operating System (ROS) applications, called Hatchery (Chapter 2). Second, we describe Kotlin∇, a language and type system for differentiable programming, an emerging paradigm in machine learning (Chapter 3). Third, we propose a new algorithm for automatically testing differentiable programs, drawing inspiration from techniques in adversarial and metamorphic testing (Chapter 4), and demonstrate its empirical efficiency in the regression setting. Fourth, we explore a container infrastructure based on Docker, which enables reproducible deployment of ROS applications on the Duckietown platform (Chapter 5). Finally, we reflect on the current state of programming tools for these applications and speculate what intelligent systems programming might look like in the future (Chapter 6). Read more
|
Page generated in 0.3316 seconds