• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minimum Norm Regularization of Descriptor Systems by Output Feedback

Chu, D., Mehrmann, V. 30 October 1998 (has links) (PDF)
We study the regularization problem for linear, constant coefficient descriptor systems $E x^. = AX + Bu, y_1 = Cx, y_2=\Gamma x^.$ by proportional and derivative mixed output feedback. Necessary and sufficient conditions are given, which guarantee that there exist output feedbacks such that the closed-loop system is regular, has index at most one and $E +BG\Gamma$ has a desired rank, i.e. there is a desired number of differential and algebraic equations. To resolve the freedom in the choice of the feedback matrices we then discuss how to obtain the desired regularizing feedback of minimum norm and show that this approach leads to useful results in the sense of robustness only if the rank of E is decreased. Numerical procedures are derived to construct the desired feedbacks gains. These numerical procedures are based on orthogonal matrix transformations which can be implemented in a numerically stable way.
2

Minimum Norm Regularization of Descriptor Systems by Output Feedback

Chu, D., Mehrmann, V. 30 October 1998 (has links)
We study the regularization problem for linear, constant coefficient descriptor systems $E x^. = AX + Bu, y_1 = Cx, y_2=\Gamma x^.$ by proportional and derivative mixed output feedback. Necessary and sufficient conditions are given, which guarantee that there exist output feedbacks such that the closed-loop system is regular, has index at most one and $E +BG\Gamma$ has a desired rank, i.e. there is a desired number of differential and algebraic equations. To resolve the freedom in the choice of the feedback matrices we then discuss how to obtain the desired regularizing feedback of minimum norm and show that this approach leads to useful results in the sense of robustness only if the rank of E is decreased. Numerical procedures are derived to construct the desired feedbacks gains. These numerical procedures are based on orthogonal matrix transformations which can be implemented in a numerically stable way.
3

Mathematical Reformulation of Physics Based Model Predicting Diffusion, Volume Change and Stress Generation in Electrode Materials

Webb, Rebecca Diane 10 November 2022 (has links)
No description available.

Page generated in 0.1601 seconds