• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 8
  • 7
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 24
  • 21
  • 16
  • 15
  • 13
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Application of adomian decomposition method to solving nonlinear differential equations

Sekgothe, Nkhoreng Hazel January 2021 (has links)
Thesis (M. Sc. (Applied Mathematics)) -- University of Limpopo, 2021 / Modelling with differential equations is of paramount importance as it provides pertinent insight into the dynamics of many engineering and technological devices and/or processes. Many such models, however, involve differential equations that are inherently nonlinear and difficult to solve. Many numerical methods have been developed to solve a variety of differential equations that cannot be solved analytically. Most numerical methods, however, require discretisation, linearisation of the nonlinear terms and other simplifying approximations that may inhibit the accuracy of the solution. Further, in some methods high computational complexity is involved. Due to the importance of differential equations in modelling real life phenomena and these stated shortfalls, continuous pursuit of more efficient solution techniques by the scientific community is ongoing. Industrial and technological advancement are to a larger extent dependent upon efficient and accurate solution techniques. In this work, we investigate the use of Adomian decomposition method in solving nonlinear ordinary and partial differential equations. One advantage of Adomian decomposition method that has been demonstrated in literature is that it achieves a rapidly convergent infinite series solution. The method is also advantageous in that it does not require one to linearise and discretise the equations as is done with other numerical methods. In our investigation, among other important examples, we will apply the Adomian decomposition method to solve selected fluid flow and heat transfer problems. Fluid flow and heat transfer models have pertinent applications in engineering and technology. The Adomian decomposition method will be compared with other series solution methods, namely the differential transform method and the homotopy analysis method. The desirable attributes of the Adomian decomposition method that are stated in literature have been ascertained in this work and it has also been demonstrated that the Adomian decomposition method compares favourably with the other series solution methods. It has also been demonstrated that in some cases nonlinear complexity results in slow convergence rate of the Adomian decomposition method.
102

Plurisubharmonic solutions to nonlinear elliptic equations

Li, Qun, 1978- January 2008 (has links)
No description available.
103

Numerical solution of nonlinear boundary value problems for ordinary differential equations in the continuous framework

Birkisson, Asgeir January 2013 (has links)
Ordinary differential equations (ODEs) play an important role in mathematics. Although intrinsically, the setting for describing ODEs is the continuous framework, where differential operators are considered as maps from one function space to another, common numerical algorithms for ODEs discretise problems early on in the solution process. This thesis is about continuous analogues of such discrete algorithms for the numerical solution of ODEs. This thesis shows how Newton's method for finite dimensional system can be generalised to function spaces, where it is known as Newton-Kantorovich iteration. It presents affine invariant damping strategies for increasing the chance of convergence for the Newton-Kantorovich iteration. The derivatives required in this continuous setting are Fréchet derivatives, the continuous analogue of Jacobian matrices. In this work, we present how automatic differentiation techniques can be applied to compute Fréchet derivatives. We introduce chebop, a Matlab solver for nonlinear boundary-value problems, which combines damped Newton iteration in function space and automatic Fréchet differentiation. By proving that affine operators have constant Fréchet derivatives, it is demonstrated how automatic linearity detection of computed quantities can be implemented. This is valuable for black-box solvers, which can use the information to determine whether an iteration scheme has to be employed for solving a problem. Like nonlinear systems of equations, nonlinear boundary-value problems can have multiple solutions. This thesis present two techniques for obtaining multiple solutions of operator equations: deflation and path-following. An algorithm combining the two techniques is proposed.
104

On singular solutions of the Gelfand problem.

January 1994 (has links)
by Chu Lap-foo. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 68-69). / Introduction --- p.iii / Chapter 1 --- Basic Properties of Singular Solutions --- p.1 / Chapter 1.1 --- An Asymptotic Radial Result --- p.2 / Chapter 1.2 --- Local Uniqueness of Radial Solutions --- p.8 / Chapter 2 --- Dirichlet Problem : Existence Theory I --- p.11 / Chapter 2.1 --- Formulation --- p.12 / Chapter 2.2 --- Explicit Solutions on Balls --- p.14 / Chapter 2.3 --- The Moser Inequality --- p.19 / Chapter 2.4 --- Existence of Solutions in General Domains --- p.24 / Chapter 2.5 --- Spectrum of the Problem --- p.26 / Chapter 3 --- Dirichlet Problem : Existence Theory II --- p.29 / Chapter 3.1 --- Mountain Pass Lemma --- p.29 / Chapter 3.2 --- Existence of Second Solution --- p.31 / Chapter 4 --- Dirichlet Problem : Non-Existence Theory --- p.36 / Chapter 4.1 --- Upper Bound of λ* in Star-Shaped Domains --- p.36 / Chapter 4.2 --- Numerical Values --- p.41 / Chapter 5 --- The Neumann Problem --- p.42 / Chapter 5.1 --- Existence Theory I --- p.43 / Chapter 5.2 --- Existence Theory II --- p.47 / Chapter 6 --- The Schwarz Symmetrization --- p.49 / Chapter 6.1 --- Definitions and Basic Properties --- p.49 / Chapter 6.2 --- Inequalities Related to Symmetrization --- p.58 / Chapter 6.3 --- An Application to P.D.E --- p.63 / Bibliography --- p.68
105

Asymptotic behavior of least energy solutions of Schrödinger-Newton equation in a bounded domain.

January 2002 (has links)
Li Kin-kuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 52-54). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.4 / Chapter 2 --- Variational Formulation --- p.10 / Chapter 3 --- The Existence Of A Mountain Pass Solution --- p.12 / Chapter 4 --- Ground States --- p.21 / Chapter 5 --- The Projections Of v And w --- p.35 / Chapter 6 --- Computation Of The Energy: An Upper Bound --- p.37 / Chapter 7 --- Convergence: The First Approximation --- p.40 / Chapter 8 --- Convergence: The Second Approximation --- p.44 / Chapter 9 --- Computation Of The Energy: A Lower Bound --- p.48 / Chapter 10 --- Comparing The Energy: Completion Of The Proof Of Theorem 1.2 --- p.51 / Bibliography --- p.52
106

Investigation of Energy-Efficient Hybrid Analog/Digital Approximate Computation in Continuous Time

Guo, Ning January 2017 (has links)
This work investigates energy-efficient approximate computation for solving differential equations. It extends the analog computing techniques to a new paradigm: continuous-time hybrid computation, where both analog and digital circuits operate in continuous time. In this approach, the time intervals in the digital signals contain important information. Unlike conventional synchronous digital circuits, continuous-time digital signals offer the benefits of adaptive power dissipation and no quantization noise. Two prototype chips have been fabricated in 65 nm CMOS technology and tested successfully. The first chip is capable of solving nonlinear differential equations up to 4th order, and the second chip scales up to 16th order based on the first chip. Nonlinear functions are generated by a programmable, clockless, continuous-time 8-bit hybrid architecture (ADC+SRAM+DAC). Digitally-assisted calibration is used in all analog/mixed-signal blocks. Compared to the prior art, our chips makes possible arbitrary nonlinearities and achieves 16 times lower power dissipation, thanks to technology scaling and extensive use of class-AB analog blocks. Typically, the unit achieves a computational accuracy of about 0.5% to 5% RMS, solution times from a fraction of 1 micro second to several hundred micro seconds, and total computational energy from a fraction of 1 nJ to hundreds of nJ, depending on equation details. Very significant advantages are observed in computational speed and energy (over two orders of magnitude and over one order of magnitude, respectively) compared to those obtained with a modern MSP430 microcontroller for the same RMS error.
107

The paradigms of mechanics : a symmetry based approach.

Lemmer, Ryan Lee. January 1996 (has links)
An overview of the historical developments of the paradigms of classical mechanics, the free particle, oscillator and the Kepler problem, is given ito (in terms of) their conserved quantities. Next, the orbits of the three paradigms are found from quadratic forms. The quadratic forms are constructed using first integrals found by the application of Poisson's theorem. The orbits are presented ito expanding surfaces defined by the quadratic forms. The Lie and Noether symmetries of the paradigms are investigated. The free particle is discussed in detail and an overview of the work done on the oscillator and Kepler problem is given. The Lie and Noether theories are compared from various aspects. A technical description of Lie groups and algebras is given. This provides a basis for a discussion of the historical development of the paradigms of mechanics ito their group properties. Lastly the paradigms are discussed ito of Quantum Mechanics. / Thesis (M.Sc.)-University of Natal, 1996.
108

Nonlinear convective instability of fronts a case study /

Ghazaryan, Anna R., January 2005 (has links)
Thesis (Ph.D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains ix, 176 p.; also includes graphics. Includes bibliographical references (p. 172-176). Available online via OhioLINK's ETD Center
109

Estudo da dispersão de risco de epizootias em animais = o caso da influenza aviária / A risk dispersion study of animal diseases : the avian influenza case

Souza, Juliana Marta Rodrigues de, 1985- 15 August 2018 (has links)
Orientador: João Frederico da Costa Azevedo Meyer / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-15T23:20:24Z (GMT). No. of bitstreams: 1 Souza_JulianaMartaRodriguesde_M.pdf: 3448446 bytes, checksum: c0a56c82b26926f022b1fbbb4b9e4fbe (MD5) Previous issue date: 2010 / Resumo: Esta dissertação de mestrado do grupo de biomatemática do Instituto de Matemática Aplicada e Computacional da UNICAMP, com auxílio de Bolsa de mestrado da CNPq, é resultado de dois anos, 2008 e 2009, de estudo a respeito da dispersão do risco de contágio do H5N1. Após tratar brevemente da estrutura viral; do papel das aves que sofrem sua ação; dos problemas financeiros que o H5N1 traria ao Brasil e já inflingiu em outras nações; o trabalho concentra-se em modelar e simular um ambiente formado de duas populações de comportamento distinto. A primeira, de aves silvestre, livres, que podem migrar. A segunda população consiste de aves restritas ao controle de um criador; não voam, não se espalham além dos limites da pequena localidade onde são criadas para fins de subsistência. Cada uma das três subdivisões destas populações, de acordo com o status em relação à doença, é modelada por uma equação diferencial parcial, compondo um sistema cuja solução numérica, necessária por conta das descontinuidades das condições iniciais, prediz o comportamentos da infecção em função do tempo e do espaço. Dentre os resultados alcançados, destaca-se: o homem parece ter chance de conter o espalhamento do vírus. Para isso teria de sacrificar todos os animais de pequenas criações e, então indivíduos da população silvestre, mas a uma taxa menor do que eles são capazes de se reproduzir, ou seriam levados a extinção. Também estão contidos neste trabalho, o estudo dos estados estacionários do sistema e a estimativa de que o coeficiente de difusão do H5N1 assumiria valores entre 0,025 e 0,5 km²/dia / Abstract: This dissertation from the IMECC, UNICAMP, Biomathematical Group, with funds offered by CNPq, is the result of two years, 2008 and 2009, of study about the spreading of H5N1 risk of infection. After treating briefly the viral structure; the birds that suffer the virus; the financial problems that the disease would bring to Brazil and has already inflicted to other nations; this paper concentrates in modeling and simulating an environment composed by two distinct behaviour population. The first one is free wild birds, that migrate. The second population consists of birds restricted to a farmer control; they don't fly, don't spread beyond little farms limits where they are raised to subsistence purposes. After dividing each of these two populations in order three, acording to their status in relation to the H5N1 infection, they are modeled by means of Partial Differential Equation, composing a non-linear system which requires numerical solution because of descontinuous inicial conditions and predicts the infection behaviour in spatial and temporal terms. Among the results figure: Humans, by completely sacrifing small farms birds and, then, wild birds in smaller rate than they reproduce themselves, seems to have a chance of prevent the virus to spread even further. This paper also study stationary states and determine, through computational methods, the H5N1 coefficient range, among 0.025 and 0.5 km²/day / Mestrado / Biomatematica / Mestre em Matemática Aplicada
110

Optimal feedback control for nonlinear discrete systems and applications to optimal control of nonlinear periodic ordinary differential equations

Zhang, Xiaohong 26 October 2005 (has links)
This dissertation presents a discussion of the optimal feedback control for nonliner systems (both discrete and ODE) and nonquadratic cost functions in order to achieve improved performance and larger regions of asymptotic stability in the nonlinear system context. The main work of this thesis is carried out in two parts; the first involves development of nonlinear, nonquadratic theory for nonlinear recursion equations and formulation, proof and application of the stable manifold theorem as it is required in this context in order to obtain the form of the optimal control law. The second principal part of the dissertation is the development of nonlinear, nonquadratic theory as it relates to nonautonomous systems of a particular type; specifically periodic time varying systems with a fixed, time invariant critical point. / Ph. D.

Page generated in 0.1517 seconds