111 |
Numerical algorithms for differential equations with periodicityMontanelli, Hadrien January 2017 (has links)
This thesis presents new numerical methods for solving differential equations with periodicity. Spectral methods for solving linear and nonlinear ODEs, linear ODE eigenvalue problems and linear time-dependent PDEs on a periodic interval are reviewed, and a novel approach for computing multiplication matrices is presented. Choreographies, periodic solutions of the n-body problem that share a common orbit, are computed for the first time to high accuracy using an algorithm based on approximation by trigonometric polynomials and optimization techniques with exact gradient and exact Hessian matrix. New choreographies in spaces of constant curvature are found. Exponential integrators for solving periodic semilinear stiff PDEs in 1D, 2D and 3D periodic domains are reviewed, and 30 exponential integrators are compared on 11 PDEs. It is shown that the complicated fifth-, sixth- and seventh-order methods do not really outperform one of the simplest exponential integrators, the fourth-order ETDRK4 scheme of Cox and Matthews. Finally, algorithms for solving semilinear stiff PDEs on the sphere with spectral accuracy in space and fourth-order accuracy in time are proposed. These are based on a new variant of the double Fourier sphere method in coefficient space and standard implicit-explicit time-stepping schemes. A comparison is made against exponential integrators and it is found that implicit-explicit schemes perform better. The algorithms described in each chapter of this thesis have been implemented in MATLAB and made available as part of Chebfun.
|
112 |
Efeito de localização para as equações estacionarias classicas de Boussinesq em um canal / Localization effect for the classic stationary Boussinesq equations in a channelNascimento, Clair do 13 August 2018 (has links)
Orientador: Jose Luiz Boldrini / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-13T20:05:11Z (GMT). No. of bitstreams: 1
Nascimento_Clairdo_D.pdf: 817500 bytes, checksum: 8cae8875eee76f5eafd08bb9814e4bff (MD5)
Previous issue date: 2009 / Resumo: Consideramos o fluxo de um fluido viscoso e incompressível em um canal bidimensional
semi-infinito, dadas velocidade e temperatura possivelmente nao nulas na entrada deste
canal. Assumindo que este fluido e governado pelas equações estacionarias classicas de
Boussinesq, sob hipoteses adequadas sobre as condições de fronteira, mostramos que pela
aplicação de certas forças sublineares (que dependendem da velocidade e da temperatura
do fluido) é possíivel parar o fluxo a uma distancia finita da entrada do canal. Mais
especificamente, a uma distancia finita da entrada do canal a velocidade e a temperatura
do fluido se anulam e assim temos o chamado efeito de localização (ou que a solução e
localizada). Este trabalho e feito em duas etapas. Primeiramente, usando um argumento de ponto
fixo com o auxilio do teorema de Leray-Schauder, mostramos a existencia de uma solução
fraca. Na segunda etapa provamos que tal solução é localizada usando estimativas do tipo
energia adequadas similares aquelas utilizadas por Bernis. Devido ao fato de que o nosso
dominio (o canal) é ilimitado, por razões tecnica, as etapas anteriores são feitas primeiramente
considerando soluções aproximadas em dominios limitados obtidos pelo truncamento
do canal; o resultado desejado 'e então obtido tomando o limite destas soluções
aproximadas usando cuidadosamente que certas estimativas são uniformes com respeito
a tais dominios truncados. / Abstract: We consider the flow of an incompressible viscous fluid in a bidimensional semi-infinity
strip, given possible non-zero velocities and temperatures at the strip entrance. Assuming
that flow is governed by the Boussinesq classic stationary equations, under suitable hypotheses
on the boundary conditions, we show that by applying certain sub-linear forces
(depending of velocity and temperature) it is possible to stop the flow at a finite distance
of the strip entrance. More specifically, at finite distance of the strip entrance, the velocity
and temperature become zero, and thus we have what is called the localization effect (or
that the solution is localized).
This work is done in two stages. First, by using a fixed point argument with help
of Leray-Schauder theorem, we show the existence of a weak solution of the system of
equations describing the flow. Second, we proof that such solution is localized by using
suitable energy estimates similar to those used by Bernis. Due the fact our domain, the
strip, is unbounded, for technical reasons the previous stages are firstly done by considering
associated approximate solutions on bounded domains, obtained by truncation of the
strip; the desired result is obtained by taking the limit of these approximate solutions by
using carefully that some estimates are uniform with respect to such truncated strips. / Doutorado / Equações Diferenciais Parciais / Doutor em Matemática Aplicada
|
113 |
Uma abordagem via transformada de Fourier para as equações de Navier-Stokes = boa-colocação e comportamento assintótico / An approach via Fourier transform for the Navier-Stokes equetions : well-posedness and asymptotic behaviorValencia Guevara, Julio Cesar, 1985- 19 August 2018 (has links)
Orientador: Lucas Catão de Freitas Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T19:21:09Z (GMT). No. of bitstreams: 1
ValenciaGuevara_JulioCesar_M.pdf: 664823 bytes, checksum: 0c43bba776e592ed44fad0d1bc2f6998 (MD5)
Previous issue date: 2012 / Resumo: Estudamos existência, unicidade, dependência contínua nos dados e comportamento assint ótico de soluções globais das equações de Navier-Stokes (com n >= 3), sob condições de pequenez no dado inicial e na força externa, em um espaço de distribuições (PMa) cuja construção é baseada na transformada de Fourier. Este espaço contém funções fortemente singulares e, em particular, funções homogêneas de um certo grau cuja correspondente solução (com tais dados) é auto-similar. Além disso, mostramos a existência de uma classe de soluções que são assintoticamente auto-similar. Estudamos também a existência de soluções estacionárias pequenas e analisamos a estabilidade assintótica delas. Finalmente, são dadas condições sob as quais a solução é uma função regular para t > 0 (mesmo com dado inicial singular) e satisfaz as equações de Navier-Stokes no sentido clássico para t > 0. Esta dissertação é baseada no artigo de M. Cannone and G. Karch, Journal of Diff. Equations 197 (2) (2004) / Abstract: We study existence, uniqueness, continuous dependence upon the data and asymptotic behavior of solutions for the Navier-Stokes equations (with n _ 3), under smallness conditions on the initial data and external force, in a space of distributions (PMa), whose construction is based on Fourier transform. This space contains strongly singular functions and, in particular, homogeneous functions with a certain degree whose corresponding solution (with such data) is self-similar. Moreover, the existence of a class of asymptotically self-similar solutions is proved. We also study the existence of small stationary solutions and their asymptotic stability. Finally, conditions are given for the obtained solution to be regular for t > 0 (even with singular initial data) and to satisfy the Navier-Stokes equations in the classical sense for t > 0. This master dissertation is based on the paper by M. Cannone and G. Karch, Journal of Diff. Equations 197 (2) (2004) / Mestrado / Matematica / Mestre em Matemática
|
114 |
Superstable manifolds of invariant circlesKaschner, Scott R. 10 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Let f:X\rightarrow X be a dominant meromorphic self-map, where X is a compact, connected complex manifold of dimension n > 1. Suppose there is an embedded copy of \mathbb P^1 that is invariant under f, with f holomorphic and transversally superattracting
with degree a in some neighborhood. Suppose also that f restricted to this line is given by z\rightarrow z^b, with resulting invariant circle S. We prove that if a ≥ b, then the local stable manifold W^s_loc(S) is real analytic. In fact, we state and prove a suitable localized version that can be useful in wider contexts. We then show that the condition a ≥ b cannot be relaxed without adding additional hypotheses by resenting two examples with a < b for which W^s_loc(S) is not real analytic in the neighborhood of any point.
|
115 |
Multiplicidade de soluções para equação de quarta ordem / Multiplicity of solutions for fourth order equationMonteiro, Evandro, 1982- 10 April 2011 (has links)
Orientador: Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T23:11:17Z (GMT). No. of bitstreams: 1
Monteiro_Evandro_D.pdf: 681089 bytes, checksum: 5ec4729a2d7b386329193adf424f6b42 (MD5)
Previous issue date: 2011 / Resumo: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The complete abstract is available with the full electronic digital thesis or dissertations / Doutorado / Matematica / Doutor em Matemática
|
116 |
Sobre uma classe de sistemas elípticos hamiltonianos / On a class of hamiltonian elliptic systemsCardoso, José Anderson Valença, 1980- 19 August 2018 (has links)
Orientador: Francisco Odair Vieira de Paiva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T21:33:51Z (GMT). No. of bitstreams: 1
Cardoso_JoseAndersonValenca_D.pdf: 1655484 bytes, checksum: 6e4f6872240f3317db759e94789f5d34 (MD5)
Previous issue date: 2012 / Resumo: Neste trabalho consideramos uma classe de Sistemas Elípticos Hamiltonianos. Esta classe de sistemas surge como modelo natural em áreas como Física e Biologia. Estudamos casos que envolvem crescimento crítico, arbitrário e crítico perturbado e analisamos questões relacionadas a existência, multiplicidade e propriedades de soluções. Os resultados são obtidos com o uso de métodos variacionais, a exemplo dos teoremas de min-max, aliados as propriedades das funções com simetria radial e ao princípio de concentração de compacidade / Abstract: In this work, we consider a class of Hamiltonian Elliptic Systems. This class of systems arise as a natural model in many areas such as Physics and Biology. We studied cases involving critical growth, arbitrary growth and perturbed critical growth and we also investigated questions related to the existence, multiplicity and properties of solutions. The results are obtained by using a variational approach, for instance, min-max theorems, combined with properties of radially symmetric functions and the concentration-compactness principle / Doutorado / Matematica / Doutor em Matemática
|
117 |
Matematické modelování pomocí diferenciálních rovnic / Mathematical modelling with differential equationsBéreš, Lukáš January 2017 (has links)
Diplomová práce je zaměřena na problematiku nelineárních diferenciálních rovnic. Obsahuje věty důležité k určení chování nelineárního systému pouze za pomoci zlinearizovaného systému, což je následně ukázáno na rovnici matematického kyvadla. Dále se práce zabývá problematikou diferenciálních rovnic se zpoždéním. Pomocí těchto rovnic je možné přesněji popsat některé reálné systémy, především systémy, ve kterých se vyskytují časové prodlevy. Zpoždění ale komplikuje řešitelnost těchto rovnic, což je ukázáno na zjednodušené rovnici portálového jeřábu. Následně je zkoumána oscilace lineární rovnice s nekonstantním zpožděním a nalezení podmínek pro koeficienty rovnice zaručující oscilačnost každého řešení.
|
118 |
Nonlinear Impulsive and Hybrid Dynamical SystemsNersesov, Sergey G 23 June 2005 (has links)
Modern complex dynamical systems typically possess a
multiechelon hierarchical hybrid structure characterized by
continuous-time dynamics at the lower-level units and logical
decision-making units at the higher-level of hierarchy. Hybrid
dynamical systems involve an interacting countable collection of
dynamical systems defined on subregions of the partitioned state
space. Thus, in addition to traditional control systems, hybrid
control systems involve supervising controllers which serve to
coordinate the (sometimes competing) actions of the lower-level
controllers. A subclass of hybrid dynamical systems are impulsive
dynamical systems which consist of three elements, namely, a
continuous-time differential equation, a difference equation, and
a criterion for determining when the states of the system are to
be reset. One of the main topics of this dissertation is the
development of stability analysis and control design for impulsive
dynamical systems. Specifically, we generalize Poincare's
theorem to dynamical systems possessing left-continuous flows to
address the stability of limit cycles and periodic orbits of
left-continuous, hybrid, and impulsive dynamical systems. For
nonlinear impulsive dynamical systems, we present partial
stability results, that is, stability with respect to part of the
system's state. Furthermore, we develop adaptive control framework
for general class of impulsive systems as well as energy-based
control framework for hybrid port-controlled Hamiltonian systems.
Extensions of stability theory for impulsive dynamical systems
with respect to the nonnegative orthant of the state space are
also addressed in this dissertation. Furthermore, we design
optimal output feedback controllers for set-point regulation of
linear nonnegative dynamical systems. Another main topic that has
been addressed in this research is the stability analysis of
large-scale dynamical systems. Specifically, we extend the theory
of vector Lyapunov functions by constructing a generalized
comparison system whose vector field can be a function of the
comparison system states as well as the nonlinear dynamical system
states. Furthermore, we present a generalized convergence result
which, in the case of a scalar comparison system, specializes to
the classical Krasovskii-LaSalle invariant set theorem. Moreover,
we develop vector dissipativity theory for large-scale dynamical
systems based on vector storage functions and vector supply rates.
Finally, using a large-scale dynamical systems perspective, we
develop a system-theoretic foundation for thermodynamics.
Specifically, using compartmental dynamical system energy flow
models, we place the universal energy conservation, energy
equipartition, temperature equipartition, and entropy
nonconservation laws of thermodynamics on a system-theoretic
basis.
|
119 |
Simulação numérica do escoamento bifásico em meios porosos heterogêneos empregando uma formulação semi-implícita, imitadores de fluxo e o método dos volumes finitos / Numerical simulation of two-phase flow in heterogeneous porous media applying a semi-implicit formulation, flux limiter and finite volume methodJulhane Alice Thomas Schulz 31 March 2009 (has links)
Neste trabalho apresentamos um esquema numérico para a simulação computacional de escoamentos bifásicos, água-óleo, em reservatórios de petróleo. O modelo matemático consiste em um sistema de equações diferenciais parciais não-linear nas incógnitas velocidade, pressão e saturação. Uma quebra de operadores a dois níveis possibilita uma maior eficiência ao método permitindo que a velocidade, fornecida pelo problema de velocidade-pressão, seja atualizada somente para determinados intervalos de tempo associados ao problema de transporte advectivo-difusivo em termos da saturação. O método dos volumes finitos é empregado na resolução numérica do problema de velocidade-pressão e do transporte de massa por advecção e difusão. Na solução do problema de transporte de massa utilizamos limitadores de fluxo na aproximação dos termos advectivos e diferenças centradas para os termos difusivos. O nosso simulador foi validado a partir de confrontações dos seus resultados com as soluções teóricas conhecidas para os problemas unidimensionais, equações de Burgers e de Buckley-Leverett, e com outros resultados numéricos em se tratando do escoamento bifásico água-óleo bidimensional em meios porosos heterogêneos. / A new numerical method is proposed for the solution of two-phase flow problem in petroleum reservoirs. The two-phase (water and oil) flow problem is governed by a pressure-velocity equation coupled to a saturation equation. For computational eficiency an operator spliting technique is used; distinct time steps can be used for the computation of transport and pressure-velocity problems. The finite volume method is used in the numerical solution of the velocity-pressure and mass transport problems. A flux limiter is used for the numerical discretization of the advective terms while centered schemes are employed for the diffusion terms in the mass transport problem. In the validation of our numerical method we compared numerical and theoretical solutions for one dimensional problems, Burgers and Buckley-Leverett equations, and compared our numerical results to others, in the case of oil-water flows in two dimensions for an heterogeneous porous media.
|
120 |
Simulação numérica do escoamento bifásico em meios porosos heterogêneos empregando uma formulação semi-implícita, imitadores de fluxo e o método dos volumes finitos / Numerical simulation of two-phase flow in heterogeneous porous media applying a semi-implicit formulation, flux limiter and finite volume methodJulhane Alice Thomas Schulz 31 March 2009 (has links)
Neste trabalho apresentamos um esquema numérico para a simulação computacional de escoamentos bifásicos, água-óleo, em reservatórios de petróleo. O modelo matemático consiste em um sistema de equações diferenciais parciais não-linear nas incógnitas velocidade, pressão e saturação. Uma quebra de operadores a dois níveis possibilita uma maior eficiência ao método permitindo que a velocidade, fornecida pelo problema de velocidade-pressão, seja atualizada somente para determinados intervalos de tempo associados ao problema de transporte advectivo-difusivo em termos da saturação. O método dos volumes finitos é empregado na resolução numérica do problema de velocidade-pressão e do transporte de massa por advecção e difusão. Na solução do problema de transporte de massa utilizamos limitadores de fluxo na aproximação dos termos advectivos e diferenças centradas para os termos difusivos. O nosso simulador foi validado a partir de confrontações dos seus resultados com as soluções teóricas conhecidas para os problemas unidimensionais, equações de Burgers e de Buckley-Leverett, e com outros resultados numéricos em se tratando do escoamento bifásico água-óleo bidimensional em meios porosos heterogêneos. / A new numerical method is proposed for the solution of two-phase flow problem in petroleum reservoirs. The two-phase (water and oil) flow problem is governed by a pressure-velocity equation coupled to a saturation equation. For computational eficiency an operator spliting technique is used; distinct time steps can be used for the computation of transport and pressure-velocity problems. The finite volume method is used in the numerical solution of the velocity-pressure and mass transport problems. A flux limiter is used for the numerical discretization of the advective terms while centered schemes are employed for the diffusion terms in the mass transport problem. In the validation of our numerical method we compared numerical and theoretical solutions for one dimensional problems, Burgers and Buckley-Leverett equations, and compared our numerical results to others, in the case of oil-water flows in two dimensions for an heterogeneous porous media.
|
Page generated in 0.1362 seconds