211 |
Product differentiation and advertising in multiple marketsChe, Wenjiao, Kodera, Toshiki 07 1900 (has links)
No description available.
|
212 |
Dehydroepiandrosterone and 17beta-Estradiol in plasma and brain of developing and adult zebra finchesShah, Amit Harendra 11 1900 (has links)
The classical model of sexual differentiation states that genes influence gonadal differentiation, and gonadal hormones then drive sexual differentiation throughout development. This model has been called into question by research, especially in songbirds, providing evidence for alternative mechanisms like direct effect of genes and local production of steroids via de novo synthesis or local metabolism of steroid precursors like DHEA, which can be metabolized to testosterone and E₂. In order to assess the role of local steroid production on sexual differentiation in songbirds, levels of DHEA and E₂ were measured in brachial and jugular plasma, as well as brain and peripheral tissues in zebra finches at critical ages during development and in adulthood. DHEA levels in brachial and jugular plasma peaked at P30 and higher DHEA levels in jugular plasma were found in males relative to females at P30. Also, at P30, higher DHEA levels were found in rostral telencephalon in females relative to males. The findings of this study indicate that DHEA may play a role in sexual differentiation of songbirds. Surprisingly, E₂ was non-detectable in many plasma and tissue samples. Higher E₂ was found in the diencephalon in females relative to males at P3/P4 and higher E₂ was found in gonads in adult females relative to males. There was little evidence to suggest that E₂ is synthesized de novo in the brain, although perhaps E₂ is being rapidly metabolized into another estrogen or E₂ synthesis is more localized in the synapse. The findings of this study support the role of alternative mechanisms like de novo steroid synthesis and local metabolism of steroid precursors and challenge the role of classical mechanisms of sexual differentiation in songbirds. Also, these findings may have important implications for sex differences, which develop independently of gonadal hormones, in other animal species.
|
213 |
Lietuvos gyventojų pajamos ir jų diferenciacijos problema / Lithuanians’ Income and the Problem of Its DifferentiationLiaugminas, Židrūnas 04 June 2005 (has links)
The theoretical part of the master‘s paper deals with the correlation of dwellers’ disposable income and the country‘s national income; evaluation of the leading methodological attitude towards the research of dwellers’ income; determination of dwellers’ personal income as one of the main sources to satisfy human needs; determination and analysis of the research model of dwellers’ income level, structure and differentiation; formation of the system related to the personal income and differentiation of its main factors.
The hypothesis based on both theoretical and practical planes states that the absolute equality of income is not only impossible but even unacceptable in the aspect of economical efficiency.
The practical – analytical part of the paper involves the analysis of dwellers’ disposable income level, structure and the tendencies of differentiation variations in the particular social groups of dwellers. The author approves the scientific research hypothesis formulated by himself: firstly, the lowest level of disposable income as well as the highest level of poverty can be traced in the household of any village, with more than three children or consisting of more than five members equally to the household, the head of which has gained lower than further education and / or belongs to the groups of people up to 30 – 39 years old and older than 60 years old. Secondly, the lower the disposable income of the household, the higher income part is made of social allowance... [to full text]
|
214 |
UNVEILING THE METABOLIC NETWORK UNDERLYING MITOCHONDRIAL AND NUCLEAR METABOLISM IN A MODEL DIFFERENTIATING STEM CELLHan, Sungwon 07 October 2013 (has links)
Participation of metabolism in stem cell differentiation has been largely disregarded until recently. Here, functional proteomics and metabolomics were performed to unveil the mitochondrial and nuclear metabolism during dimethyl sulfoxide (DMSO)-induced differentiation of P19 cells. DMSO-treated cells were shown to exhibit increased glycolytic enzymes activities and fuel pyruvate into oxidative phosphorylation. Subsequently, enzymes of electron transport chain also had elevated activities upon differentiation. These changes in mitochondrial metabolism were concomitant with increased mitochondrial biogenesis as PGC-1α expression was higher in the differentiated cells. To study nuclear metabolism, particular focus was placed on delineating a potential role of nuclear lactate dehydrogenase (LDH). Nuclear LDH was found to exhibit higher expression in pluripotent cells. NAD+ generated from LDH reaction was discovered to promote histone deacetylation via sirtuin-1 (SIRT1). Drastic alterations in mitochondrial and nuclear metabolism during differentiation point to a pivotal role of metabolism in deciding the final destination of stem cells.
|
215 |
Molecular and cellular analysis of skeletal muscle and neuronal development in a necdin-null mouse model of Prader-Willi syndromeBush, Jason Russell Unknown Date
No description available.
|
216 |
Morphometric analysis of vessel density in breast carcinomain relation to their Nottingham’s scoreErdogan, Emira January 2013 (has links)
Globally, breast cancer is the most abundant cancer form in women, in Sweden about 20 women are diagnosed with breast cancer every day .Interactions between genetic and external factors are the contributing factors while metastasis formation is the leading cause of death. Cancer is in need of vessels,to get the nutrients and oxygen it needs in order to survive. Therefore,the aim of the study is to analyze and compare the groups of high and low differential cancer vessels of the respective form, and to see if any type contained more vessels than the other. The study is based on 20 invasive ductal breast cancer samples, ten of them were high differentiated and the other ten were low differentiated. To assess the number of vessels, immunhistochemical staining with CD31 antibody was performedCD31 is an adhesion molecule present on endothelial cells. The group of low differentiated gradebreast cancer tissue had significantly more vessels compared with the high differentiated breast cancer tissues. To prove these test results, more cancers must be analyzed.
|
217 |
H3K36me3 in Muscle Differentiation: Regulation of Tissue-specific Gene Expression by H3K36-specific HistonemethyltransferasesDhaliwal, Tarunpreet 19 December 2012 (has links)
The dynamic changes in chromatin play a significant role in lineage commitment and differentiation. These epigenetic modifications control gene expression through recruitment of transcription factors. While the active mark H3K4me3 is present around the transcription start site on the gene, the function of the H3K36me3 mark is unknown. A number of H3K36-specific histone methyltransferases (HMTs) have been identified, however the focus of this study is the HMT Hypb. To elucidate the role of H3K36me3 in mediating expression of developmentally-regulated loci, native chromatin immunoprecipitation (N-ChIP) was performed at a subset of genes. Upon differentiation, we observe that H3K36me3 becomes enriched at the 3’ end of several muscle-specific genes. To further investigate the role of H3K36me3 in myogenesis, a lentiviral-mediated knockdown of the H3K36 HMT Hypb was performed in muscle myoblasts using shRNA. Upon Hypb knockdown, we were surprised to observe enhanced myogenesis. N-ChIP was also performed on differentiated Hypb knockdown cell lines in order to look at H3K36me3 enrichment on genes involved in muscle differentiation. N-ChIP data show a drop in H3K36me3 enrichment levels on myogenin and Ckm genes. The possible occupancy of Hypb on the coding regions of muscle-specific genes was experimentally observed by cross-linked chromatin immunoprecipitation (X-ChIP) on differentiated C2C12 cells and subsequently confirmed by X-ChIP on knockdown lines where the occupancy was lost. A model is proposed that links the observed phenotype with H3K36me3.
|
218 |
The H3K27 Histone Demethylase Kdm6b (Jmjd3) is Induced by Neuronal Activity and Contributes to Neuronal Survival and DifferentiationWIJAYATUNGE, RANJULA January 2012 (has links)
<p>Changes in gene transcription driven by the activation of intracellular calcium signaling pathways play an important role in neural development and plasticity. A growing body of evidence suggests that stimulus-driven modulation of histone modifications play an important role in the regulation of neuronal activity-regulated gene transcription. However, the histone modifying enzymes that are targets of activity-regulated signaling cascades in neurons remain to be identified. The histone demethylases (HDMs) are a large family of enzymes that have selective catalytic activity against specific sites of histone methylation. To identify HDMs that may be important for activity-regulated gene transcription in neurons, we induced seizures in mice and screened for HDMs whose expression is induced in the hippocampus. Among the few HDMs that changed expression, Kdm6b showed the highest induction. Kdm6B is a histone H3K27-specific HDM whose enzymatic activity leads to transcriptionally permissive chromatin environments. In situ hybridization analysis revealed that Kdm6b is highly induced in post-mitotic neurons of the dentate gyrus region of the hippocampus. We can recapitulate the activity-dependent induction of Kdm6b expression in cultured hippocampal neurons by application of Bicuculline, a GABAA receptor antagonist that leads to synaptic NMDA receptor activation and calcium influx. Kdm6b expression is also induced following application of BDNF, a neurotrophic factor that is upregulated in the seized hippocampus. To investigate possible functions of Kdm6b in neuronal development, we performed in situ hybridization analysis that allows for the identification of regions with high Kdm6b expression that could be sites of potential function in the developing mouse brain. We found high levels of Kdm6b expression in the inner layer of the external granule layer of the cerebellum, a region where pre-migratory immature neurons reside and a site of significant apoptosis. On the basis of this data and the fact that intracellular calcium signaling arising from synaptic firing supports neuronal survival, we explored the necessity for Kdm6b in the survival of cultured cerebellar granule cells. Knock down of Kdm6b by RNAi increases cell death, demonstrating that Kdm6b contributes to neuronal survival. Ongoing experiments are addressing the role of Kdm6b in neuronal differentiation. Overall these data raise the possibility that stimulus-dependent regulation of Kdm6b, and perhaps regulation of H3K27 methylation mediated by Kdm6b, may contribute to the regulation of gene expression in neurons and thus to their proper development and plasticity.</p> / Dissertation
|
219 |
Tissue transglutaminase in human and experimental diabetic nephropathySkill, Nicholas James January 2001 (has links)
No description available.
|
220 |
From single cells to multicellular organisms : a quantitative analysisIber, Dagmar January 2006 (has links)
The evolution and development of multicellular organisms requires cells to differentiate, interact and "collaborate". Our understanding of the molecular mechanisms is still hazy. In this dissertation mathematical modelling is used to integrate available experimental data and to make testable predictions about such mechanisms. The thesis is split into three parts, each of which addresses one of the three challenges: differentiation, adhesion and collaboration. In the first part, a mathematical model is developed to explain how, in the absence of polarizing cues from the environment, sister cells with identical genomes can follow distinct routes of differentiation. It is shown that difference in cell size, resulting from asymmetric cell division, is sufficient to induce differential cell fate in Bacillus subtilis. The model predicts that this effect depends on the allosteric behaviour of a kinase and the low catalytic rate of the corresponding phosphatase; both properties were subsequently confirmed in experiments. During the development of multicellular organisms, differentiation can arise in response to gradients. By example of dorso-ventral patterning it is shown how a shallow maternal gradient can be converted into a sharp pattern. In the second part, a model for cell adhesion via integrins is developed, and it is shown that, for physiological parameters, binding of a ligand and of a stabilizing factor such as talin are insufficient for ligand-dependent integrin activation, and that a positive signaling feedback is required. In the final part, antibody affinity maturation is studied as an example for division of labour between collaborating cells. A novel B cell selection mechanism, based on competition for T cell help rather than for antigen, is proposed and shown to reconcile heretofore inexplicable experimental observations. Such a mechanism requires B cells to discriminate among different affinities of binding, and it is further shown that this can be achieved if B cell signaling is initiated by antigen-dependent receptor-inhibitor segregation. The predictions of the model match experimental measurements quantitatively.
|
Page generated in 0.1078 seconds