• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 22
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 132
  • 37
  • 25
  • 23
  • 22
  • 20
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Modelagem numérica do escoamento em válvulas automáticas de compressores pelo Método da Fronteira Imersa /

Rodrigues, Tadeu Tonheiro. January 2010 (has links)
Resumo: A compreensão do escoamento em válvulas de compressores herméticos alternativos é de fundamental importância para introduzir modificações no projeto delas de maneira a aumentar a performance dos compressores, e por fim, dos ciclos de refrigeração. A válvula do compressor é um dispositivo ímpar, umas vez que seu funcionamento se dá pela ação da pressão exercida pelo escoamento, caracterizando um problema de forte interação fluido- estrutura. O uso da modelagem numérica através das ferramentas da mecânica dos fluidos computacional (CFD) tem se destacado como a alternativa mais dinâmica para o estudo do fenômeno. O trabalho desenvolvido foi voltado para o estudo numérico do escoamento através do difusor radial, o qual é um modelo simplificado da válvula, com o emprego do Método da Fronteira Imersa com Modelo Físico Virtual para a modelagem do disco superior do difusor (palheta). O ponto forte desta metodologia é que a representação de regiões sólidas é feita pelo cálculo de um campo de força, o qual é introduzido nas equações das células na vizinhança do sólido. Este procedimento dispensa o uso de malhas que se adaptam ao corpo, possibilitando o uso de malhas cartesianas convencionas para modelar geometrias complexas e móveis. A metodologia foi acoplada com a solução das equações governantes do escoamento em coordenadas cilíndricas através do Método dos Volumes Finitos. Inicialmente, a metodologia foi validada, utilizando como dados de referência resultados provenientes de estudos numéricos e experimentais, e foi avaliada a influência dos parâmetros do procedimento na qualidade final dos resultados. Na segunda etapa foram desenvolvidos estudos preliminares referentes ao movimento do disco superior, com a imposição artificial dos processos de abertura e fechamento da válvula. Os resultados obtidos mostraram que a metodologia adotada ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The fully understanding of the flow through automatic valves of alternative hermetic compressors is essentiall to introduce modifications in its project aiming the improvement of the compressor performance and, also, the refrigeration cycle. The compressor valve is a singular device, once its operation is ruled by the flow pressure, characterizing a case with a strong fluid-structure interaction. The using of numerical tools trough the methods of computational fluid dynamics (CFD) has gained especial attention due to its flexibility to study the phenomenon. The present work was developed to study numerically the flow through the radial diffuser, which is a simplified model of the valve, with the employment of the Immersed Boundary Method with Virtual Physical Model to modeling the superior disk (valve reed). The main advantage of this methodology is that the modeling of solid boundaries is performed with the calculus of a force field, which is introduced in the cells equations nearby the solid. This procedure dispenses the using of body-fitted meshes, enabling the adoption of conventional Cartesian meshes to model complex and moving geometries. The methodology was coupled with the solution of the governing equations in cylindrical coordinates though the Finite Volume Method. Firstly, the methodology was validated, confronting the results obtained with data from numerical and experimental studies, where the influence of the main parameters in the quality of the final results was evaluated. In the second step were developed preliminary studies concerning the movement of the superior disk, whose opening and closing movements were artificially imposed. The results obtained showed that the adopted methodology is quit promising and flexible, and can be employed in more refined studies to the comprehension of the flow through the valve regarding the fluid-structure interaction that rules the problem / Orientador: José Luiz Gasche / Coorientador: Júlio Militzer / Banca: Cassio Roberto Macedo Maia / Banca: Elie Luis Martinez Padilla / Mestre
82

Análise termodinâmica, termoeconômica e econômica de uma usina sucroalcooleira com processo de extração por difusão

Rocha, Glauber [UNESP] 26 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-26Bitstream added on 2014-06-13T19:30:00Z : No. of bitstreams: 1 rocha_g_me_ilha.pdf: 2184479 bytes, checksum: 3442824b5f0f3377090625de5e9acd1f (MD5) / Neste trabalho são realizadas análises termodinâmicas, termoeconômicas e econômicas aplicadas a uma usina de açúcar e álcool com processo de extração por difusão, envolvendo desde a configuração inicial de implantação da usina até a expansão para uma planta moderna de potência cujo principal objetivo é a produção de excedente de energia elétrica. São consideradas quatro situações: a configuração inicial da planta, definida como Caso 1, que opera visando gerar energia elétrica apenas para o próprio consumo e, também, vapor para o processo de produção de álcool; na seqüência tem-se a configuração, definida como Caso 2, onde o intuito é produzir o máximo de energia elétrica que o turbogerador pode fornecer e vapor para a produção de álcool e, também açúcar; na configuração seguinte, definida como Caso 3, é adicionada na planta uma turbina de condensação visando um melhor aproveitamento para a geração de energia elétrica; e, por fim, na última configuração, definida como Caso 4, é adicionada uma nova turbina de extração condensação e uma caldeira de alta pressão, priorizando a geração de energia elétrica / In this work thermodynamic, thermoeconomic and economical analyses were accomplished in a sugar-alcohol factory with extraction process for diffusion, considering the initial configuration implanted until the expansion for a modern power plant whose main objective is the production of electric power surplus. Four situations were considered: the initial configuration of the plant, defined as Case 1, that operates generating electric power just for the own consumption and, also, steam for the alcohol production process; in sequence it was studied the configuration defined as Case 2, where the intention is to produce the maximum of electric power that the turbogenerator can supply and steam for the production of alcohol and, also, sugar; in the following configuration, defined as Case 3, it is added in the plant a condensation turbine for a better use in the electric power generation; and, finally, in the last configuration, defined as Case 4, it is added a new extractioncondensation turbine and a high pressure boiler, prioritizing the electric power generation
83

Analyse expérimentale et modélisation numérique des mécanismes d'interactions instationnaires à proximité du pompage d'un étage de compresseur centrifuge à fort taux de compression

Bulot, Nicolas 18 February 2010 (has links)
Le présent travail s'inscrit dans le cadre d'une collaboration entre le Laboratoire de Mécanique des Fluides et d'Acoustique à l'École Centrale de Lyon (LMFA-ECL), Turbomeca et l'ONERA. Le sujet de recherche porte sur l'interaction rouet-diffuseur et sur l'entrée en régime de pompage d'un étage de compresseur centrifuge transsonique à fort taux de compression étudié à vitesse de rotation de croisière (0,927Nn). L'alimentation des analyses est réalisée par trois méthodes de mesures et deux types de simulations numériques. Le module d'essai est installé sur le banc d'essai 1 MW du LMFA. La caractérisation expérimentale du compresseur TM est réalisée par le biais de mesures de pression et température auxquelles sont adjointes des mesures du débit et de la vitesse de rotation de la roue mobile. La description de l'écoulement interne au compresseur s'appuie sur les résultats de sondages par Anémométrie Laser à effet Doppler (LDA) et de mesures de pression à haute fréquence. Les simulations numériques sont réalisées par l'intermédiaire du code de calcul elsA développé par l'ONERA, qui permet de résoudre le système d'équations de Navier-Stokes couplé à un modèle de turbulence k-l de Smith. Deux modélisations de l'interaction rouet-diffuseur permettent de générer des champs aérodynamiques stationnaires (modèle plan de mélange) et instationnaires (modèle chorochronique). La comparaison entre les données expérimentales et numériques est très satisfaisante et permet alors de profiter pleinement de la richesse des informations numériques. L'examen détaillé de l'écoulement interne au rouet pour trois points de fonctionnement (à débit bloqué, à rendement maximum et à proximité du pompage) révèle que, du blocage vers le pompage, l'évolution de l'intensité et de la taille du tourbillon de jeu est le point de départ d'un enchaînement de mécanismes conduisant à la dilatation du sillage de la structure jet-sillage. Pour l'écoulement en amont du diffuseur, ceci ce traduit en moyenne temporelle par une augmentation de l'incidence principalement au voisinage du moyeu. L'onde de choc en amont des aubes du diffuseur remonte à mesure que le débit du compresseur diminue. La trajectoire de l'écoulement principal bascule du côté de la face en dépression vers le côté de la face en pression du canal inter-aubes du diffuseur. La cartographie des nombreux décollements de couches limites est également modifiée à l'approche du pompage. Les structures instationnaires majeures sont produites par l'interaction de l'onde de choc en amont des aubes du diffuseur avec les pales du rouet. Des ondes de pression progressives et des poches à faible nombre de Mach sont ainsi générées. Les ondes pression impriment d'intenses fluctuations au champ de vitesse qui favorisent le processus de mélange. En conséquence, les couches limites sont plus robustes vis-à-vis des décollements (en moyenne temporelle). Le défilement instationnaire des poches à faible nombre de Mach engendre une dissymétrie marquée des conditions d'alimentation du diffuseur dans la direction azimutale. Au cours du changement de point de fonctionnement en allant du débit bloqué vers le pompage, les ondes de pression se renforcent et la taille des poches à faible nombre de Mach diminue. De ce fait, les conditions sont plutôt favorables à retarder l'entrée en pompage du compresseur qui est localement initié en amont du diffuseur aubé. Le pompage du compresseur est provoqué par un changement rapide de la structure supersonique de l'écoulement en entrée de diffuseur qui est alors déstabilisée par les fluctuations de pression des ondes progressives. / The present work is in line with a collaboration between the Laboratoire de Mécanique des Fluides et d'Acoustique at École Centrale de Lyon (LMFA-ECL), Turbomeca and ONERA. The subject is focused on impeller-diffuser interaction and phenomena occurring during surge ignition of a transonic centrifugal stage with high-compression ratio at cruise rotation speed (0,927Nn). The analysed data come from three measurement devices and two kinds of numerical simulations. The 1MW LMFA-ECL test rig was used for carrying out the experiments on the centrifugal compressor stage. The global performances were obtained by pressure, temperature, mass flow rate and rotation speed measurements. The internal flow field properties were probed by Laser Doppler Anemometry (LDA) and high frequency pressure measurements. The computations were performed with the elsA software developed at ONERA. The code solves the compressible Reynolds Averaged Navier-Stokes equations associated with the two-equations (k-l) turbulence model of Smith. Two models of impeller-diffuser interaction were used to simulate the flow within the compressor. The first model is based on the Averaged Passage equations, gives a stationary description of the internal flow fields. The second model is based on the phase lagged approach and allows access to the unsteady phenomena. A good agreement between experiments and simulations was obtained, which justifies the use of the CFD results for the flow field analysis. Analysis of the flow development within the impeller were carried out for three operating points (choke, peak efficiency and close to surge). This study shows that, from choke to near surge, the development of the tip clearance vortex is the starting point of a sequence of physical mechanisms which lead to an extend of the wake of the jet-wake structure. The change in flow field at impeller exit tends to increase the upstream incidence of the vaned diffuser, especially close to the hub. The vane bow shock wave progresses in the impeller passages when the operating point moves from choke to near surge. The location of the main flow moves from suction side to pressure side of the vaned diffuser passage. The topology of the boundary layer separations within the diffuser passage is deeply affected when approaching surge. The main unsteady structures are generated by the interaction between the bow shock wave and the impeller blades. Progressive pressure waves and low Mach number flow bubbles are generated by this locally time-spaced interaction phenomenon. The pressure waves lead to strong fluctuations of the velocity field. As a consequence, the boundary layer becomes more resistant in relation to the separations (in term of time-averaged point of view). In time-averaged point of view, the low Mach number flow bubbles lead to inhomogeneous conditions at the vaned diffuser inlet along the azimuthal direction . From choke to near surge operating point, the strength of the pressure wave increases whereas the size of the low Mach number flow bubbles decreases. These conditions are quite favourable to push back the surge limit which is locally initiated in the inlet part of the vaned diffuser. The surge of the compressor is produced by a rapid change in supersonic flow structure at diffuser inlet. The pressure fluctuations due to the progressive waves lead to destabilise the new supersonic flow configuration and degenerate in the global instability of the compressor flow.
84

A theoretical and experimental investigation of the flow performance of automotive catalytic converters

Haimad, N. January 1997 (has links)
Considerable research is being carried out into the parameters that affect catalyst performance in order to meet the latest emission regulations. The conversion efficiency and the durability of automotive catalytic converters are significantly dependent on catalyst flow performance. Related investigations are commonly conducted using CFD techniques which represent an inexpensive and fast alternative to experimental methods. This thesis focuses on the flow performance of automotive catalytic converters using both experimental and computational techniques. The work describes the effects of inlet flow conditions on catalyst performance, the application of radial vanes to catalyst systems and the refinement of the CFD flow model which increases the accuracy of the predicted catalyst flow performance. the effects of inlet flow conditions on the flow maldistribution across the catalyst face and the total pressure loss through the system were assessed using a steady air flow rig. Tests were conducted over a range of Reynolds numbers typically encountered in automotive catalytic converters using a uniform and a fully-developed inlet flow condition. The results showed that the flow maldistribution significantly increases with Reynolds number notably in wide-angled diffusers. The catalyst flow performance is considerably improved when the inlet flow is uniform rather than fully-developed, the non-dimensional total pressure loss is reduced by 8% at Re=60000 and the flow maldistribution across the catalyst face is decreased by 12.5% and 15% respective Reynolds numbers of 30000 and 60000 when using a 60 degree diffuser. The total pressure loss through the system was found to be mostly associated with the monolith brick resistance. When the flow maldistribution is approximately 2, the pressure loss across the monolith brick represents 80% of the system pressure loss. The flow maldistribution across the catalyst face was improved by locating a system of radial splitters in the diffuser. The optimum flow performance was found to be a complex function of the vane design. A maximum improvement in the flow maldistrution indices M and Mi of 25% and 50% respectively was achieved at the expense of an increase in total pressure loss of 13.5% at Re = 60000. Both CFD and flow visualisation techniques were used as an aid to interpreting the flow field in the diffuser. Although a qualitative agreement was obtained using CFD, the flow maldistribution across the catalyst face was underpredected by up to 20%. The accuracy of the flow predictions was significantly improved by investigating the flow field in the monolith channels. Flow recirculation occurs in the channel entry length when the flow approaches the monolith channels at an angle which induces an additional implemented into four models of the flow through axisymmetric catalyst assemblies using various diffuser geometries and inlet flow conditions. By including the flow entrance effects in the porous media approach, the flow maldistribution was predicted within 8% instead of 15% when these effects are neglected. Further investigation of the flow in the monolith channels will be required to accurately model three-dimentional flows (racetrack catalysts) and to include various channel geometries and system flow rates.
85

Výpočet savky turbiny na zadané parametry / The computation of draft tobe of the turbine for giving parameters

Žák, František January 2017 (has links)
This diploma thesis describes design of a new shape of the draft tube for small hydro Katovice with maintaining built dimension. First part of this thesis is devoted to the formulation of the problem, description of basic function of the draft tube, its efficiency and other formulas. In the second part of this thesis the analysis is made for original design supported by CFD calculation. Furthermore a new design of the draft tube is made with comparison of original draft tube.
86

Experimentální stanovení charakteristik proudění vzduchu z distribučních prvků / Experimental determination of the characteristics of air flow The distribution of elements

Ekl, Martin January 2013 (has links)
The thesis is aimed at the problem of the air distribution in buildings. The object of research is the concert hall. The thesis contains three different technical proposals and technical views of the microclimate concert hall. The microclimate’s solutions are focused on the air distribution in the hall. The part of the thesis is an experiment. The experiment continues on the one of the technical proposals. Its purpose is to determine the characteristics of air flowing from distribution element.
87

Klimatizace líhně kuřat / Air Conditioning of chicken brooder

Petr, Lukáš January 2009 (has links)
My diploma thesis focuses on design of air-conditioning system for chicken breeding spaces. In the background are considered general issues of air-conditioning, hatchery layout and microclimate for eggs incubation and chicken breeding. The research part is divided into two parts – Calculations and Design. The Calculations address the amount of incoming fresh air, heat loss, heat load and psychrometric calculations for summer and winter periods. The Design focuses on defining suitable diffusers and air-ducts, optimal air-conditioning unit with fans corresponding to hatchery requirements and pressure loss in ducts. The technical drawings and a list of used material are included.
88

Hydraulický návrh difuzoru čerpadla pro dva provozní body. / The design of hydraulic diffuser for the pump for two operational points.

Dobšáková, Lenka January 2012 (has links)
The pump is suggested for optimum operation point wherein usually works. If the machine works in the areas of flows except for design point, it will cause decrease in its efficiency or genesis of pulsation. The compromise solution is possible to use the pump in a large range of flows together with high efficiency. The solution is diffuser with double curvature of vanes.
89

Study of the Dissipation in Spiraling Vortical Structures / Study of the Dissipation in Spiraling Vortical Structures

Štefan, David January 2015 (has links)
This work deals with study of swirling flows where the spiral vortical structure appears. The main relation is to flow seen in the draft tube cone of hydraulic turbines operated out of the design point (i.e. best efficiency point). In this cases large coherent vortex structure (vortex rope) appears and consequently high pressure pulsations are propagated to the whole machine system leading to possible restriction of turbine operation. This flow features are consequence of flow instability called vortex breakdown in case of Francis turbine operated at part load (flow rate lower than optimal one). The present study is carried out using simplified device of swirl generator in order to access similar flow conditions as can be found in real hydraulic turbines. Both the dynamic and dissipation effect of spiral vortex breakdown are investigated. The first part of thesis deals with spiral form of vortex breakdown. The experimentally measured velocity profiles (LDA) and wall static pressures are correlated with numerical simulations carried out using open-source CFD package OpenFOAM 2.2.2. The high speed camera recording of cavitating vortex core is used to obtain image ensemble for further post-processing. The dissipation effect of spiral vortex structure is in detail discussed based on computed flow fields. The second part of thesis is dedicated to the application of POD decomposition to the study of spatio-temporal features of spiral vortex dynamics. Firstly the POD is applied to the both the experimentally obtained image ensemble of cavitating vortex and numerically computed static pressure fields. Secondly the comprehensive analysis of spiral vortex mitigation effect by the axial water jet is analyzed. The collaborative study employing the swirl generator apparatus designed by the researchers from Politehnica University of Timisoara in Romania is performed and changes in spatio-temporal vortex dynamic are studied. In this study the numerical data (in a form of three-dimensional pressure and velocity fields) are obtained using commercial CFD software ANSYS Fluent R14.
90

CFD INVESTIGATION OF IMPELLER DIFFUSER INTERACTION EFFECTS ON RADIAL COMPRESSOR STAGE

Kumlu, Armagan January 2014 (has links)
The effects of impeller-diffuser interaction are investigated through numerically simulating the modified wedge vane profiles. Steady and time-accurate, 3D- viscous RANSsolver is used to perform flow field computations. The original design is modified to obtain better aerodynamic performance. Five morechanges are made to the leading edge profile of the new design, in order to assess different degrees of unsteadiness. These changes show that their contribution on stageefficiency is rather minor, while they have a huge reduction on blade loadings. Moreover, it is shown that the shorter radial distance of vaneless space does not necessarilymean an increased loading thanks to the eliminating in-phase fluctuations on pressureand suction sides. It is found that the impeller reacts to the upstream static pressure disturbance, whichis caused by the applied geometry change and its resultant flow field in the wedge diffuser, but not to the radial location of a certain profile. In addition, the results indicatethat the wedge diffuser aerodynamic performance is driven by time-averaged flow fieldbehaviour.

Page generated in 0.0407 seconds