Spelling suggestions: "subject:"diffusion dégénérées"" "subject:"diffusion dégénéré""
1 |
Fonctions de Green et support de diffusions hypoelliptiquesGradinaru, Mihai 27 June 1995 (has links) (PDF)
La première partie contient une description précise de <br />la singularité près de la diagonale de la fonction de Green <br />associée à un opérateur hypoelliptique. L'approche est <br />probabiliste et repose sur le développement de Taylor <br />stochastique des trajectoires de la diffusion associée <br />et sur les estimations à priori de la fonction de Green. <br />On donne des exemples et des applications à la théorie du <br />potentiel.<br />Dans la deuxième partie on étend le théorème de support <br />de Stroock-Varadhan pour la norme hölderienne. L'outil central <br />est l'estimation de la probabilité pour que le mouvement brownien <br />ait une grande norme hölderienne, conditionnellement au fait <br />qu'il ait une petite norme uniforme.
|
2 |
Étude mathématique de modèles stochastiques d'évolution issus de la théorie écologique des dynamiques adaptativesChampagnat, Nicolas 06 December 2004 (has links) (PDF)
Cette thèse porte sur l'étude probabiliste de modèles écologiques appartenant à la récente théorie des "dynamiques adaptatives". Après avoir précisé et généralisé le cadre et l'heuristique biologique de ces modèles, nous obtenons une justification microscopique d'un modèle d'évolution par sauts à partir d'un système de particules en interaction à valeurs mesure, décrivant la dynamique de la population à l'échelle individuelle. Il s'agit d'un résultat de séparation d'échelles de temps lié à deux asymptotiques : mutations rares et grande population. Ensuite, nous retrouvons une équation différentielle ordinaire connue sous le nom d'"équation canonique des dynamiques adaptatives" en appliquant une asymptotique de petits sauts au processus précédent. Cette asymptotique nous conduit à introduire un modèle d'évolution par diffusion comme approximation diffusion du processus de saut, dont les coefficients présentent une mauvaise régularité : dérive discontinue et diffusion dégénérée aux mêmes points. Nous examinons d'abord l'existence faible, l'unicité en loi et la propriété de Markov forte pour ces processus, questions liées au problème d'atteinte de certains points isolés de l'espace. Enfin, nous démontrons un principe de grandes déviations pour ces diffusions qui permet d'étudier le temps et le lieu de sortie d'un domaine attracteur --- question biologique fondamentale.
|
Page generated in 0.0514 seconds