131 |
Análise da dinâmica não linear do processo de biodigestão em um biodigestor indiano no espaço de estados via técnica de Lyapunov /Tanaka, Gustavo Chaves. January 2018 (has links)
Orientador: Antonio Roberto Balbo / Coorientadora: Célia Aparecida dos Reis / Banca: Marcelo Suetake / Banca: André Christovão Pio Martins / Resumo: Atualmente pesquisas sobre a produção de energia com menor impacto ambiental, com maior rendimento energético e, possivelmente, a um custo mínimo de produção, são de interesse mundial. Desta forma, a produção de energia renovável, com estas características, através de biodigestores torna-se uma alternativa relevante. Os biodigestores, em geral, consistem de biorreator que armazena matéria orgânica fresca (substrato ou biomassa) de origem humana, animal ou vegetal. A fermentação anaeróbica destes substratos produz um gás combustível (biogás) que pode ser utilizado como fonte de energia e o material remanescente no biodigestor pode ser usado como biofertilizante. O processo de biodigestão é complexo, pois envolve vários grupos de bactérias e o seu entendimento é importante para promoção de agentes que visam aumentar a eficiência dos biodigestores. Neste trabalho propõe-se um modelo dinâmico não linear para descrever o processo de fermentação da biomassa dentro do biodigestor. Realiza-se também uma análise do modelo mediante a técnica de Lyapunov, a qual possibilitou a investigação de soluções analíticas assintoticamente estáveis e um estudo de seu espaço de fase, que contempla a sua estabilidade assintótica. Simulações numéricas são realizadas para a validação dos resultados obtidos ao modelo proposto / Abstract: Nowadays, research on energy production with lower environmental impact, with higher energy efficiency and, possibly, at a minimum cost of production, is of worldwide interest. In this way, the production of renewable energy, with these characteristics, through biodigesters becomes a relevant alternative. Biodigesters generally consist of a chamber that stores fresh organic matter (substrate or biomass) of human, animal or plant origin. Anaerobic fermentation of these substrates produces a fuel gas (biogas) that can be used as an energy source and the remaining material in the biodigester can be used as biofertilizer. The biodigestion process is complex because it involves several groups of bacteria and its understanding is important to promote agents that aim to increase the efficiency of biodigesters. This essay proposes a dynamic non-linear model to describe the fermentation process of an Indian biodigester. It is also proposed an analysis of the model using the Lyapunov technique, which became possible the investigation of asymptotically stable analytical solutions and asymptotic stability and a study of its phase space, which contemplates its asymptotic stability. Numerical simulations are performed to convalidate the proposed model. / Mestre
|
132 |
Taxas metabólicas de repouso e pós-prandiais em serpentes do gênero Bothrops, com ênfase nos aspectos ontogenéticos e filogenéticos (Crotalinae) / Standard metabolic rates and specific dynamic action in Bothrops with emphasis on ontogenetic and phylogenetic features (Crotalinae)Stuginski, Daniel Rodrigues 13 June 2014 (has links)
Os viperídeos estão entre as serpentes de menor custo energético de manutenção, o que é, geralmente, relacionado a seus baixos níveis de deslocamento e a tática de forrageio por emboscada. Dois importantes componentes do alocamento energético destes animais são: 1) o metabolismo de repouso padrão, que está relacionado ao custo de manutenção visceral durante o repouso e 2) o aumento metabólico pós-prandial (AMPP), que está relacionado ao custo do processo digestório. O presente trabalho teve como objetivos estudar as variações da TMRP (taxa metabólica de repouso padrão) e do AMPP em 5 espécies pertencentes ao gênero Bothrops levando em conta aspectos filogenéticos, ontogenéticos e testando hipóteses acerca de possíveis variações destes componentes em função de características ecológicas. Além disso, o presente trabalho testou, através de ferramentas de ponderação filogenética, a hipótese atualmente aceita que prediz que as TMRPs em serpentes estão essencialmente ligadas a estratégia alimentar e não a filogenia. O trabalho está dividido em quatro capítulos, sendo o primeiro devotado a uma introdução geral acerca dos assuntos que serão abordados nos demais. Os resultados e discussões específicas estão divididos em dois capítulos redigidos em forma de artigo, primeiro referente aos estudos das taxas metabólicas de repouso (capítulo 2) e o segundo sobre o AMPP (capítulo 3). Por fim, a conclusão final acerca dos achados e as perspectivas para pesquisas futuras estão presente no capítulo 4. / The viperids are among the snakes with the lowest energetic maintenance costs which are generally related to the low mobility and ambush foraging mode. Two important components of energy allocation in these animals are 1) standard metabolic rates (SMR), related to the cost of keeping visceral components during resting and 2) specific dynamic action (SDA) , which is related to the cost of digestion. The present work aimed to study the variations of SMR and SDA in 5 species of the genus Bothrops taking into account aspects of phylogeny and ontogeny plus testing hypotheses about possible variations in these metabolic rates related to ecological characteristics. Furthermore, the present study used phylogenetic weighting tools to test the currently accepted hypothesis that predicts that SMR in snakes is related to the feeding strategy and not to phylogeny. The work is divided into four different chapters. Chapter 1 is devoted to a general introduction about the issues that will be addressed in the others chapters. The results and discussions are divided into two chapters presented as articles, the first referring to studies of SMR ( chapter 2 ) and the second to the SDA (chapter 3 ). Finally, in chapter 4 we include the final conclusion and prospects for future research
|
133 |
Development and application of an in vitro physicochemical upper gastrointestinal system (IPUGS) simulating the human digestive processesYoo, Ji Yeon January 2009 (has links)
Increased and combined knowledge of food processing, molecular biology, health and nutrition has triggered production of many different types of functional foods and pharmaceutics recently. The efficacy and safety of such products are being assessed prior to marketing by in vivo and/or in vitro studies. Traditional in vivo studies require excessive time, cost and labour, as well as ethical approvals with subject to humans or animals in some instances. Therefore excessive number of runs may be avoided if reliable in vitro system is available. During the course of this study, an in vitro physicochemical upper gastrointestinal tract system (IPUGS), the first of its kind in literature, has been developed to simulate the relevant conditions of the gastrointestinal tract (GIT) as closely as possible to the human physiology with multi-disciplinary approach, combining biology, physiology, gastroenterology, process technology, chemical engineering and automation. The IPUGS is aimed at having a high predictive capability towards the real digestion processes occurring in the human upper GIT which allows for examining of the bioavailability of nutrients and drugs, drug-nutrient interactions, viability of probiotics and case studies of gastrointestinal disorders. Digestion of rice and baby foods have been studied with the IPUGS by UV-spectrophotometer, HPLC, light microscope and pH meter under the conditions of normal state and common gastric disorders, such as gastroparesis, dumping syndrome, Zollinger-Ellison syndrome and hypochlorhydria. By comparing the data from many physiological and clinical sources in the literature, it would seem that the IPUGS was able to generate more reliable data compared to the existing in vitro digestion (mechanical) models in the literature. In future, computer-controlled and computer-recorded data by possibly designing a new software or equations would be desirable to implicate a better understanding of the digestive processes.
|
134 |
Determination of phosphorus in turbid freshwaters using alkaline peroxodisulphate digestionWoo, Lirasari, n/a January 1995 (has links)
Methods for determining phosphorus in turbid lake and river water using
heating with an autoclave or a microwave and employing alkaline
peroxodisulphate digestion have been investigated. Suspensions (up to 100
ugP/L) of two standard reference materials (NIES No. 3 Chlorella and NEES No.
2 Pond Sediment) were used to optimised procedures.
Quantitative recoveries of phosphorus were achieved when the final
solution to be digested contained 0.045 M potassium peroxodisulphate and 0.04
M sodium hydroxide and solutions were autoclaved at 120°C for 60 min. or
microwaved at 450 Watts for 5-10 min. Complete recoveries of phosphorus (99-
103%) from 20 ugP/U 50 ugP/L and 100 ugP/L Chlorella suspensions were
obtained using autoclave and microwave heating. For the Pond Sediment
suspensions complete recoveries of phosphorus (99-104%) from the 20 ugP/L
and 50 ugP/L were obtained using both heating methods. Higher recoveries from
the 100 u.gP/L Pond Sediment suspensions were obtained using microwave
heating (96±1%) than autoclaving (88±5%). Further analysis of Pond Sediment
suspensions using the autoclave heating showed that complete recovery of
phosphorus (98±l%) from 60 ngP/L suspensions was achieved with incomplete
recoveries (92.3±0.7%, 91�2% and 91�1%) from 70 ugP/L, 80 ugP/L and 90 ug
P/L suspensions respectively. Recoveries of phosphorus compounds
(orthophosphate and phosphonates) added to distilled water and turbid lake water
were near quantitative (91-117%) for both digestion methods.
A range of turbid lake and river water (TP = 57-106 ugP/L; Turbidity =
16-200 NTU) were analysed for total phosphorus (TP) using the optimised
alkaline peroxodisulphate digestion procedures and the APHA AWWA WPCF,
sulphuric acid - nitric acid digestion procedure. No difference in total
phosphorus measurements were found between the microwave digestion
procedure and the APHA AWWA WPCF, nitric acid - sulphuric acid procedure.
The autoclave procedure gave significantly lower recoveries of phosphorus
(p<0.01), however, differences were only 2-8%.
The effect of freezing (-20�C) water samples without or with the addition
of 1% hydrochloric acid before determination of total phosphorus (TP) and total
dissolved phosphorus (TDP) was also investigated. No significant change in total
phosphorus occurred when samples were stored frozen without the addition of
1% hydrochloric acid in high and low density polyethylene bottles for up to 20
weeks and 2 weeks respectively after collection. Significant changes were found
in total dissolved phosphorus when samples were stored frozen without the
addition of 1% hydrochloric acid in high and low density polyethylene bottles
after 1 day and 2 weeks respectively.
|
135 |
Enhancement of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste by Microwave PretreatmentShahriari Zavareh, Haleh 03 October 2011 (has links)
This study evaluates the enhancement of anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by microwave pretreatment (MW) at high temperatures (115, 145 and 175°C). The highest level of solubilization was achieved at 175ºC, with a supplemental water addition of 30% (SWA30). Pretreatments combining two modalities; MW heating in presence or absence of hydrogen peroxide (H2O2) was also investigated. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW, as well as on the liquid fractions.
The whole OFMSW pretreated at 115 and 145 ºC showed little improvement in biogas production over control. When pretreated at 175 ºC, biogas production decreased due to formation of refractory compounds, inhibiting digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for supplemental water addition of 20% (SWA20) at 145 ºC. Combining MW and H2O2 modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production.
Based on the BMP assay results, the effects of MW pretreatment (145 ºC) on the AD of OFMSW (SWA20) were further evaluated in single and dual stage semi-continuous digesters at hydraulic retention times (HRTs) of 20, 15, 12 and 9 days. Overall, MW pretreatment did not enhance the AD of the whole waste at the HRTs tested. However, the use of a dual stage reactor digesting non pretreated whole OFMSW had the best performance with the shortest HRT of 9 days. Conversely, for free liquid after pretreatment in two stage reactors at 20 day HRT methane production was tripled. In general, the performance of the dual stage digesters surpassed that of the single stage reactors.
Cyclic BMP assays indicated that using an appropriate fraction of recycled effluent leachate can be implemented without negatively effecting methanogenic activity and biogas production.
Based on the results obtained in this study, digestion of OFMSW by dual stage reactors without pretreatment appears to provide the best potential for waste stabilization in terms of biogas production and yield, process stability and volumetric loading rates.
|
136 |
Application of Microwaves and Thermophilic Anaerobic Digestion to Wastewater Sludge TreatmentGabriel Coelho, Nuno Miguel 24 April 2012 (has links)
Anaerobic digestion of waste activated sludge can be improved if hydrolysis of particulate substrates is enhanced and available substrate is made more accessible by both breakup of the sludge matrix floc and rupture of the cell wall. Microwave (MW) pretreatment was suggested and studied as a way to improve digestion efficiency. The work done focuses on the effects of MW pretreatment on the characteristics of the sludge, due to thermal and athermal effects. It also evaluates the effects some process variables in the activated sludge process have on the pretreatment efficiency as well as the effect operating conditions in the downstream anaerobic digestion process have on the biodegradability efficiency of those sludges.
Effects of athermal and thermal MW radiation were measured by use of a customized MW oven capable of providing MW radiation with uncoupled thermal and athermal effects. Athermal radiation was capable of increasing substrate present in the soluble phase of sludge, and had a positive effect in the digestion of athermal samples. The increases in biogas production and substrate solubilisation were smaller in magnitude than the increases measured for MW thermal tests. Further refining of the tests with athermal and thermal sludge, involved separation by size class of the solubilized substrate by means of ultrafiltration (UF), and revealed that changes in particle size distribution were significant not only for MW thermal tests, but also for athermal tests, with a particular emphasis in proteins in athermal tests. These changes had an effect on the biodegradability of the sludges by class size, with thermally pretreated sludge producing more biogas for smaller particles size classes but also exhibiting more inhibition.
Tests were made with several combinations of sludge with different ages and subject to different MW pretreatment temperatures. The work showed that sludge age or solids retention time (SRT) has a significant effect on the pretreatment efficiency with maximum biogas improvements measured at different MW pretreatment temperatures depending on the SRT of the sludge tested, and with different behaviour for mesophilic and thermophilic digestion. Mesophilic tests showed greater improvements in terms of digestion effiency on average, but thermophilic tests showed more uniform performance, with a higher baseline efficiency. The presence of an optimum of MW pretreatment temperature and sludge SRT for maximal biogas production is more defined for mesophilic conditions than for thermophilic conditions.
Semi-continuous studies were conducted with several combinations of single and two stage mesophilic and thermophilic digestors treating MW pretreated sludge and non-pretreated sludge. Staging and thermophilic digestion allowed the maintenance of a stable digestion process with high biogas productions and high solids removal efficiencies with production of sludge with good bacteriological characteristics for an very low residence time (5 d).
|
137 |
Solid-state anaerobic digestion for integrated ethanol productionLung, Patricia 09 November 2011
Anaerobic digestion (AD) is a biochemical process consisting of the microbiological conversion of organic materials for the purpose of generating biogas. Biogas is typically composed of 50 to 70% methane (CH4) and 50 to 30% carbon dioxide (CO2) with trace amounts of other compounds. Anaerobic digestion technology is a bioprocessing technology that has the potential to be integrated into an ethanol facility to further capture energy, in the form of methane gas, for use in a combined heat and power (CHP) generator or for integration into the natural gas pipeline grid after undergoing an upgrading process. The most simplistic design of an AD system is the solid state digester (SSD) which is able to process very high solids content materials (greater than 15% solids). A SSD has the potential to be utilized as a manure management system in a beef cattle feedlot and it has the potential to integrate seamlessly into a combined ethanol- feedlot operation to capitalize on the eco-cluster concept in bioenergy production.
This thesis investigates the biogas and digestate composition seen from four material blends in a solid-state digester (SSD) system operated as a batch reactor. Wet distiller grains (WDG) from a grain ethanol process and cattle manure were the substrates investigated. To assess the biogas composition the system was operated over a period of time to achieve a quasi steady state within the microbial population to maximize the CH4 concentration in the biogas composition. To assess the robustness of the microbial population within each substrate blend, the biogas concentrations were measured over three cycle periods where a portion of the used substrate was replaced with an equal amount of fresh substrate. The digestate composition was analyzed at the end of each of the cycles and compared with the raw substrate to determine changes in solids and nutrient values.
The biogas production calculated in this study determined 0.17, 0.21, 0.18, and 0.12L per gram (VS) within 100% WDG, 75%WDG and 25% manure, 25% WDG and 75% manure and the 100% manure substrate (Group 1 through 4) respectively, averaged over all three digestion cycles. At the end of three cycles of digestion the biogas within the substrate blend containing 25% WDG and 75% manure (Group 3) achieved a measured CH4 concentration of 49% and the biogas within the 100% manure substrate (Group 4) achieved a 59% concentration of CH4. The duration for each of Group 3 and Group 4 to achieve the production of viable biogas was 100 and 90 days of operation respectively. Thus it can be concluded that a SSD system start up duration will be between three and four months in duration.
The gas data gathered in this research study indicates Group 3 had the most robust methanogenic culture established as it has the lowest overall N2 and CO2 concentration detected in the biogas, and the most consistent performance of CH4 production during each cycle. The investigation conducted on the nutrient data gathered in this research supports the conclusion drawn from the gas data regarding the overall methanogenic performance of the substrate blends. The nutrient data for Group 3 maintained an average carbon to nitrogen (C:N) ratio of 25:1 over all three digestion cycles. The nitrogen, phosphorous, potassium, and sulphur components of the manure fertilizer value were maintained through the digestion process of this investigation thus typical manure application rate calculations are applicable when field applying digestate.
|
138 |
Solid-state anaerobic digestion for integrated ethanol productionLung, Patricia 09 November 2011 (has links)
Anaerobic digestion (AD) is a biochemical process consisting of the microbiological conversion of organic materials for the purpose of generating biogas. Biogas is typically composed of 50 to 70% methane (CH4) and 50 to 30% carbon dioxide (CO2) with trace amounts of other compounds. Anaerobic digestion technology is a bioprocessing technology that has the potential to be integrated into an ethanol facility to further capture energy, in the form of methane gas, for use in a combined heat and power (CHP) generator or for integration into the natural gas pipeline grid after undergoing an upgrading process. The most simplistic design of an AD system is the solid state digester (SSD) which is able to process very high solids content materials (greater than 15% solids). A SSD has the potential to be utilized as a manure management system in a beef cattle feedlot and it has the potential to integrate seamlessly into a combined ethanol- feedlot operation to capitalize on the eco-cluster concept in bioenergy production.
This thesis investigates the biogas and digestate composition seen from four material blends in a solid-state digester (SSD) system operated as a batch reactor. Wet distiller grains (WDG) from a grain ethanol process and cattle manure were the substrates investigated. To assess the biogas composition the system was operated over a period of time to achieve a quasi steady state within the microbial population to maximize the CH4 concentration in the biogas composition. To assess the robustness of the microbial population within each substrate blend, the biogas concentrations were measured over three cycle periods where a portion of the used substrate was replaced with an equal amount of fresh substrate. The digestate composition was analyzed at the end of each of the cycles and compared with the raw substrate to determine changes in solids and nutrient values.
The biogas production calculated in this study determined 0.17, 0.21, 0.18, and 0.12L per gram (VS) within 100% WDG, 75%WDG and 25% manure, 25% WDG and 75% manure and the 100% manure substrate (Group 1 through 4) respectively, averaged over all three digestion cycles. At the end of three cycles of digestion the biogas within the substrate blend containing 25% WDG and 75% manure (Group 3) achieved a measured CH4 concentration of 49% and the biogas within the 100% manure substrate (Group 4) achieved a 59% concentration of CH4. The duration for each of Group 3 and Group 4 to achieve the production of viable biogas was 100 and 90 days of operation respectively. Thus it can be concluded that a SSD system start up duration will be between three and four months in duration.
The gas data gathered in this research study indicates Group 3 had the most robust methanogenic culture established as it has the lowest overall N2 and CO2 concentration detected in the biogas, and the most consistent performance of CH4 production during each cycle. The investigation conducted on the nutrient data gathered in this research supports the conclusion drawn from the gas data regarding the overall methanogenic performance of the substrate blends. The nutrient data for Group 3 maintained an average carbon to nitrogen (C:N) ratio of 25:1 over all three digestion cycles. The nitrogen, phosphorous, potassium, and sulphur components of the manure fertilizer value were maintained through the digestion process of this investigation thus typical manure application rate calculations are applicable when field applying digestate.
|
139 |
Enhancement of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste by Microwave PretreatmentShahriari Zavareh, Haleh 03 October 2011 (has links)
This study evaluates the enhancement of anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by microwave pretreatment (MW) at high temperatures (115, 145 and 175°C). The highest level of solubilization was achieved at 175ºC, with a supplemental water addition of 30% (SWA30). Pretreatments combining two modalities; MW heating in presence or absence of hydrogen peroxide (H2O2) was also investigated. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW, as well as on the liquid fractions.
The whole OFMSW pretreated at 115 and 145 ºC showed little improvement in biogas production over control. When pretreated at 175 ºC, biogas production decreased due to formation of refractory compounds, inhibiting digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for supplemental water addition of 20% (SWA20) at 145 ºC. Combining MW and H2O2 modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production.
Based on the BMP assay results, the effects of MW pretreatment (145 ºC) on the AD of OFMSW (SWA20) were further evaluated in single and dual stage semi-continuous digesters at hydraulic retention times (HRTs) of 20, 15, 12 and 9 days. Overall, MW pretreatment did not enhance the AD of the whole waste at the HRTs tested. However, the use of a dual stage reactor digesting non pretreated whole OFMSW had the best performance with the shortest HRT of 9 days. Conversely, for free liquid after pretreatment in two stage reactors at 20 day HRT methane production was tripled. In general, the performance of the dual stage digesters surpassed that of the single stage reactors.
Cyclic BMP assays indicated that using an appropriate fraction of recycled effluent leachate can be implemented without negatively effecting methanogenic activity and biogas production.
Based on the results obtained in this study, digestion of OFMSW by dual stage reactors without pretreatment appears to provide the best potential for waste stabilization in terms of biogas production and yield, process stability and volumetric loading rates.
|
140 |
Study of the effect of process parameters on the thermophilic anaerobic digestion of sewage sludge, evaluation of a thermal sludge pre-treatment and overall energetic assessmentFerrer i Martí, Ivet 08 October 2008 (has links)
El consum energètic representa un 30 % dels costos d'operació en sistemes intensius de tractament d'aigües residuals urbanes. En depuradores convencionals que utilitzin un sistema de fangs activats, entorn al 15-20 % de l'energia és consumida en la línia dels fangs, que inclou el bombeig, l'espessiment, l'estabilització i la deshidratació. Per tant, la optimització de la gestió dels fangs pot contribuir substancialment en la reducció dels costos de tractament d'aigües residuals. La digestió anaeròbia termofílica és més eficient que la mesofílica i pscicrofílica, en termes de producció de biogàs i metà, eliminació de sòlids volàtils (SV) i destrucció de patògens. El procés es pot accelerar mitjançant el pre¬tractament dels fangs, afavorint la seva solubilització i hidròlisi. L'objecte d'aquesta Tesi Doctoral fou estudiar l'impacte dels paràmetres del procés en la digestió anaeròbia termofílica dels fangs de depuradora urbana, avaluar l'efecte del pre-tractament tèrmic dels fangs a baixa temperatura, i valorar processos alternatius des del punt de vista energètic. Els resultats experimentals presentats s'obtingueren mitjançant l'operació de dos reactors de laboratori durant prop de dos anys. En aquest període es va estudiar l'efecte de la temperatura del procés, del temps de retenció dels fangs (TRF), de la velocitat de càrrega orgànica (VCO) i del pre-tractament a 70 ºC en la digestió anaeròbia dels fangs de depuradora. El procés fou avaluat en termes de la producció d'energia (biogàs i metà) i de la qualitat del fang digerit (contingut de SV i d'àcids grassos volàtils (AGV), facilitat de deshidratació i higienització). S'analitzà l'estabilitat del procés a mesura que es reduïa el TRF i s'incrementava la VCO, i es comparà l'eficiència en períodes d'estabilitat corresponents a les diferents condicions operacionals. Finalment, s'avaluaren els resultats des del punt de vista energètic, mitjançant el càlcul de balanços i ratis energètics teòrics, que es compararen amb els resultats obtinguts a partir de dades experimentals d'altres estudis. També s'utilitzà un model cinètic de primer ordre. Les conclusions que es desprenen d'aquest treball es resumeixen a continuació: Durant la digestió anaeròbia dels fangs, la transició d'un reactor mesophilic (43 ºC) a termofílic (50 ºC) es podria dur a terme sense alterar el procés, treballant a TRF elevats (≥ 30 dies) i VCO baixes (≤ 0.5 kg SV m-3reactor d-1). En aquestes condicions, les principals diferències entre reactors termofílics (50-55 ºC) i mesofílics (38-43 ºC) fan referència a una certa acumulació d'AGV (0.5-2.5 g L-1) i millora de la destrucció de patògens (E. coli ≤ 102 UFC mL-1). La digestió termofílica a 50 ºC i 55 ºC dóna lloc a resultats similars pel que fa a la producció de biogàs, estabilització, higienització i facilitat de deshidratació de l'efluent, si no varien els altres paràmetres operacionals. La producció de metà tendeix a incrementar proporcionalment a la VCO, és a dir al TRF i el contingut de SV als fangs alimentats. Així mateix, la qualitat de l'efluent (contingut de SV i AGV, facilitat de deshidratació dels fangs) també depèn de la VCO. D'acord amb els resultats obtinguts a 55 ºC, la producció de metà s'incrementà 2-3 vegades (de 0.2 a 0.4-0.6 m3CH4 m3reactor d-1) en disminuir el TRF de 30 a 15-10 dies, incrementant la VCO de 0.5 a 2.5-3.5 kg SV m3reactor d-1. En canvi, el procés es desestabilitzà amb la reducció del TRF a 6 dies i VCO per sobre de 5 kg SV m3reactor d-1. Les següents concentracions poden ser útils per detectar i prevenir la desestabilització d'un digestor termofílic de fangs: AGV totals (2.5 g L-1), acetat (0.5 g L-1), rati acetat/propionat (0.5), alcalinitat intermèdia (1.8 g CaCO3 L-1), rati alcalinitat intermèdia/alcalinitat parcial (0.9), rati alcalinitat intermèdia/alcalinitat total (0.5), contingut de metà al biogàs (55 %). El pre-tractament a 70 ºC afavoreix la solubilització dels fangs, incrementant la proporció de matèria orgànica soluble respecte la matèria orgànica total del 5 % al 50 % en 9-24 h; seguit d'una progressiva generació d'AGV després de 24h. Durant la subseqüent digestió anaeròbia de fangs pre¬tractats (9-48 h), s'incremetà la producció de biogàs en un 30-40 %, treballant a 55 ºC i 10 dies de TRF. El rendiment de producció de biogàs fou un 30 % superior amb fangs pre-tractats (0.28-0.30 vs. 0.22 L·gVS¬1) i el contingut de metà al biogàs també fou superior (69 % vs. 64 %). La digestió anaeròbia termofílica de fangs pot donar lloc a una producció neta d'energia, durant estacions fredes i càlides, si s'utilitzen reactors amb aïllament tèrmic de les parets i amb recuperació energètica a partir del biogàs i dels fangs digerits. En aquest cas, l'eficiència energètica de reactors termofílics treballant a la meitat de TRF (10-15 dies) que reactors mesofílics (20-30 dies) seria similar, per la qual cosa el cabal diari podria ser doblat, o el volum del reactor reduït, amb el conseqüent estalvi en el cost de tractament dels fangs. A més, un sistema en dues etapes (70/55 ºC) produiria més energia neta que un sistema en una sola etapa (55 ºC) amb un TRF de 10 dies. De totes maneres, la quantitat d'energia neta generada augmenta amb el volum del digestor donat que, malgrat la disminució en la producció de metà a TRF creixents, la producció d'energia segueix essent superior al consum, i per tant com més quantitat de fangs hi hagi al digestor, més energia es produirà. / Energy consumption accounts for some 30 % of the total operating costs of intensive sewage treatment systems. In conventional wastewater treatment plants employing an activated sludge process, around 15-20 % of this energy is used in the sludge treatment line, including sludge pumping, thickening, stabilisation and dewatering. Therefore, optimisation of sludge management can substantially contribute in the reduction of wastewater treatment costs. Thermophilic anaerobic digestion is more efficient than mesophilic anaerobic digestion, in terms of biogas production, volatile solids (VS) removal and pathogens destruction. The process might be further accelerated by sludge pre-treatment, promoting sludge solubilization and hydrolysis. The aim of this PhD Thesis was to study the impact of process parameters on the thermophilic anaerobic digestion of sewage sludge, to evaluate the effect of implementing a low temperature pre¬treatment step, and to assess alternative processes from an energy perspective. The experimental results presented were obtained by operating two lab-scale reactors for almost two years. During this period, the effect of process temperature, sludge retention time (SRT), organic loading rate (OLR) and 70 ºC sludge pre-treatment on the anaerobic digestion of sewage sludge was studied. The process was evaluated in terms of energy production (i.e. biogas and methane production) and the quality of the effluent sludge (i.e. VS and volatile fatty acids (VFA) content, sludge dewaterability and hygienisation). Focus was put on the stability of the process at decreasing SRT and increasing OLR. Process efficiency during stable performance under each operating condition assayed was compared. Finally, the results were assessed from an energy perspective, by means of theoretical energy balances and ratios; and compared to the results obtained with experimental data from other studies. A first order kinetic model was also used. The conclusions drawn from the different issues dealt in this work are summarised as follows: During anaerobic sludge digestion, the transition from a mesophilic (43 ºC) to a thermophilic operation (50 ºC) may be carried out without disturbing the process, by operating the reactors at high SRT ( ≥ 30 days) and low OLR (≤ 0.5 kg VS m-3reactor d-1). Under such conditions, some VFA accumulation (0.5-2.5 g L-1) and enhanced pathogen destruction (residual E. coli ≤ 102 CFU mL-1) would be the main differences of thermophilic (50-55 ºC) compared to mesophilic (38-43 ºC) reactors. Thermophilic sludge digestion at 50 ºC and 55 ºC should be similar in terms of biogas production and effluent stabilisation, hygienisation and dewaterability; provided that other process parameters are the same. Methane production rate tends to increase proportionally to the OLR, thus to the SRT and VS concentration in the feed sludge. Similarly, the quality of the effluent sludge (VS content, VFA content and sludge dewaterability) is also affected by the OLR. According to the results obtained at 55 ºC, methane production rate increased by 2-3 times (from 0.2 to 0.4-0.6 m3CH4 m3reactor d-1) by decreasing the SRT from 30 to 15-10 days; increasing the OLR from 0.5 to 2.5-3.5 kg VS m3reactor d-1. However, process unbalance resulted from SRT reduction to 6 days, with OLR above 5 kg VS m3reactor d-1. The following concentrations might be useful to detect and prevent digester failure during thermophilic sludge digestion: total VFA (2.5 g L-1), acetate (0.5 g L-1), acetate/propionate ratio (0.5), intermediate alkalinity (1.8 g CaCO3 L-1), intermediate alkalinity/partial alkalinity ratio (0.9), intermediate alkalinity/total alkalinity ratio (0.5), methane content in biogas (55 %). The 70 ºC sludge pre-treatment may initially promote sludge solubilization, increasing the concentration of soluble to total organic matter from 5 to 50 % within 9-24 h; which is followed by a progressive VFA generation after 24 h. Subsequent anaerobic digestion of pre-treated sludge samples (9¬48 h) could increase biogas production by 30-40 % working at 55 ºC with a SRT of 10 days. Biogas yield is some 30 % higher with pre-treated sludge (0.28-0.30 vs. 0.22 L·gVSfed-1) and methane content in biogas is also higher with pre-treated sludge (69 vs. 64 %). Thermophilic anaerobic sludge digestion would result in net energy production, during cold and warm seasons, provided that digesters with wall insulation and with energy recovery from both the biogas produced and the effluent sludge are used. In this case, the energetic efficiency would be similar for thermophilic digesters working at half the SRT (10-15 days) of mesophilic digesters (20-30 days), meaning that the sludge daily flow rate could be doubled, or the reactor volume reduced, with subsequent savings in terms of sludge treatment costs. Furthermore, two-stage systems (70/55 ºC) may result in higher net energy production compared to single-stage systems (55 ºC) at 10 days SRT. However, the amount of surplus energy generated increases with digester volume. In spite of the decrease in methane production rate at increasing SRT, energy production is still higher than energy consumption, and therefore the bigger the amount of sludge in the digester, the higher the energy production.
|
Page generated in 0.0984 seconds