• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 21
  • 12
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on Correlation between Microstructures and Electronic Properties of Organic Semiconductors

Mukhopadhyay, Tushita January 2017 (has links) (PDF)
The work carried out in this thesis systematically investigates the correlation between microstructures and electronic properties of organic semiconductors. The major directions that were pursued in this thesis are: (i) studies on structure-property relationship by rational design and synthesis of monodisperse oligomers with varying chain-lengths (ii) role of electronic properties and aggregation (microstructures) in governing singlet fission (SF). In the first part of the thesis, the optical, structural and charge transport properties of Diketopyrrolopyrrole (DPP)-based oligomers, as a function of the chain length, has been discussed. The energy bands became wider with an increase in chain length and a gain in backbone electron affinity was observed, with an offset in microstructural order. With an increase in chain length, the tendency to form intramolecular aggregates increased as compared to intermolecular aggregates due to the onset of backbone conformational defects and chain folding. An insight into the solid-state packing and microstructural order has been obtained by steady-state and transient spectroscopy, grazing incidence small angle x-ray scattering (GISAXS), atomic force microscopy (AFM) and transmission electron microscopy (TEM) studies. The charge-carrier mobilities varied in accordance with the degree of microstructural order as: dimer > trimer > pentamer. A library of DPP-DPP based trimers was also generated by modifying the donor chromophore (phenyl, thiophene and selenophene) in the oligomer backbone. Highest n-channel mobility of ~0.2 cm2V-1s-1 was obtained which validated that: (a) the effect of solid-state packing predominates the effect of backbone electronic structure on charge carrier mobility. Although oligomers possess lesser backbone defects than polymers in general, their charge carrier mobilities were not comparable to that of 2DPP-OD-TEG polymer, which forms highly oriented and isotropic edge-on crystallites/microstructures in the thin film, shows high n-channel mobility of 3 cm2V-1s-1 and band-like transport ;(b) although delocalized electronic states are achieved at greater chain lengths, the degree of solid-state microstructural order drastically reduces which leads to lower charge carrier mobilities; (c) conformational collapse resulted in lower electron mobilities and an increase in ambipolarity. The later part of the thesis debates on the relative contribution of electronic structure and aggregation (microstructures) in governing singlet fission (SF). Motivated by the recent SF model in carotenoid aggregates, a DPP-DPP based oligomer was synthesized by incorporating a vinylene bridge to imbue “polyene” character in the chromophore. Transient Spectroscopy (TA) measurements were carried out to monitor the formation of triplet states in the oligomer and to probe the occurrence of singlet fission. Although the oligomer exhibits “polyene” character like a typical “carotenoid aggregate”, it did not show singlet fission because of the additional stabilization of the singlet (S1) state which reduces the ∆EST. This study rationalized the importance of judicious control of band structures as well as microstructures to observe the SF phenomenon in this category of chromophores. The novel synthetic protocol provides the scope to tailor DPP-DPP based materials with desired effective conjugation lengths and side chains and can foreshow great prospects for future generation of organic electronics.
2

DIKETOPYRROLOPYRROLE‐ AND ISOINDIGO‐ BASED CONJUGATED POLYMER FOR ORGANIC ELECTRONIC DEVICE

ZHOU, JIANING 02 May 2021 (has links)
No description available.
3

Push-Pull Molecules: Models and Polymer Building Blocks for Organic Photovoltaic Applications

Devaughn, Raymond 01 January 2014 (has links) (PDF)
Several fluorenone alkynyl based oligo conjugated molecules were synthesized and characterized. Most compounds exhibited UV-Vis absorption onset at ca. 500 nm and a PL emission onset of ~329-370 nm, with excimer emission suspected from most systems near ~530-560 nm. Experimentally determined EHOMO and ELUMO energies range from -6.02 to -5.73 eV and -3.47 and 3.55 eV, respectively, with the lowest experimental Eg lying at -2.26 eV for 2-(trimethoxyphenylacetylene)-fluorenone. Cyclic voltammetry indicates quasi-reversible reduction for all systems, with 2,7-bis(nitrophenylacetylene)fluorenone exhibiting a high reduction potential of -1.25 eV. Only 2,7-bis(trimethoxyphenylacetylene)fluorenone exhibited a quasi-reversible oxidation, due to electron rich methoxy substituents. Diketopyrrolopyrrole systems as electron acceptors were also explored.
4

Rational Design of Diketopyrrolopyrrole-Based Conjugated Polymers for Ambipolar Charge Transport

Kanimozhi, K Catherine January 2013 (has links) (PDF)
The present thesis is focused on the rational design of Diketopyrrolopyrrole based π- conjugated polymers for organic electronics. The thesis is organized into six different chapters and a brief description of the individual chapters is provided below. Chapter 1 briefly describes the physics governing the electronic processes occurring in organic photovoltaics (OPVs) and organic field-effect transistors (OFETs) followed by design rules for the synthesis of conjugated polymers for organic electronics. Diketopyrrolopyrrole (DPP) based π-conjugated materials and their development in OPVs and OFETs have been highlighted. Chapter 2 discusses the synthesis and characterization of a series of small molecules of DPP derivatives attached with different alkyl chains. Influence of side chains on the photophysical properties of these DPP derivatives have been studied by UV-visible spectroscopy and DFT calculations. Crystal structure studies revealed the effect of alkyl chains on the torsional angle, crystal packing, and intermolecular interactions such as π-π stacking. Chapter 3 reports the synthesis of novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPPDPP) based conjugated copolymers and their application in high mobility organic field-effect transistors. Effect of insulating alkyl chains on polymer thin film morphology, lamellar packing and π-π stacking interactions have been studied in detail. Investigation of OFET performance of these DPP-DPP copolymers with branched alkyl chains (N-CS2DPP-ODEH) resulted in low charge carrier mobilities as compared to the polymers (N-CS2DPP-ODHE) with linear alkyl chains. Polymer with triethylene glycol side chains (N-CS2DPP-ODTEG) exhibited a high field-effect electron mobility value of ~3 cm2V-1s-1 with a very low threshold voltage of ~2 V. Chapter 4 investigates the effect of torsional angle on the intermolecular interactions and charge transport properties of diketopyrrolopyrrole (DPP) based polymers (PPDPP-OD-HE and PPDPP-OD-TEG). Grazing incidence x-ray diffraction studies shows the different orientation of the polymer crystallites and lamellar packing involved in polymer thin films. Investigation of OFETs evidenced the effect of torsional angle on the charge transport properties where the polymer with higher torsional angle PPDPP-OD-TEG resulted in high threshold voltage with less charge carrier mobility compared to the polymer with lower torsional angle (N-CS2DPP-OD-TEG). Chapter 5 investigates the effect of photoactive material morphology on the solar cell device performance, and charge transfer kinetics by adding high boiling point processing additives. DPP based donor-acceptor (D-A) type low band gap polymers (PTDPPQ and PPDPPQ) have been synthesized and employed in bulk-heterojunction (BHJ) solar cells with the acceptor PC71BM. Addition of processing additive 1,8-diiodooctane (DIO) resulted in three order improvements in power conversion efficiency (PCE). Chapter 6 describes the design and synthesis of two diketopyrrolopyrrole based copolymers (PPDPP-BBT and PTDPP-BBT) for their application in organic devices such as field-effect transistors and bulk-heterojunction solar cells. Investigation of OFET performance of these DPP based copolymers displayed hole mobilities in the order of 10-3 cm2V-1s-1. The semiconductor-dielectric interface has been characterized by capacitance-voltage, and Raman scattering methods. In summary, the work presented in this thesis describes the synthesis and characterization of diketopyrrolopyrrole based new polymeric semiconductors. Effects of insulating side chains and torsional angle on the charge transport properties of these polymers in OFETs have been investigated. This work also describes the effect of solvent additives on the active layer morphology and BHJ solar cell device performance. The results described here show that these materials have potential application as active components in plastic electronics.
5

Senzorické vlastnosti organických N-typových polovodičů a jejich stabilita na vzduchu / Sensoric properties of organic N-type semiconductors and their air stability

Saska, Pavel January 2013 (has links)
Hydrogen has been for some time discussed as a successor to fossil fuels whose stocks are constantly running low. One of the crucial requirements for the possible usage of hydrogen as an energy carrier is our ability of reliable detection. In context with development of organic electronics there occurred a possibility to use derivatives of diketopyrrolopyrroles as sensing materials of hydrogen sensors. Derivatives of diketopyrrolopyrrole are organic pigments that behave as semiconductors. Their analogues with pyridyl side group are due to free electron pairs of nitrogen atoms sensitive to hydrogen. The problem of organic N-type semiconductors is in general their instability on the air. This thesis is focused on testing of hydrogen sensors with active layer made from derivatives of diketopyrrolopyrrole and judging their stability on the air.
6

Testovaní organických vodikových senzorů / Testing of hydrogen sensor based on organic materials

Petrová, Lenka January 2011 (has links)
Práce je zaměřena na problematiku bezpečnostních vodíkových senzorů. Základní principy a teorie vodíkových senzorů je rozebrána v první části práce. Je navržena metodologie testování organických vodíkových senzorů vyvinutých a vyrobených na Fakultě Chemické Vysokého Učení Technického v Brně. Nejslibnější organický material byl testován. V závěrečné části byl navržen teplotní regulátor pro použití s keramickou senzorovou platformou.
7

Syntéza a studium nových derivátů diketopyrrolopyrrolů (DPPs) pro organickou elektroniku / The synthesis and study of new derivatives of diketopyrrolopyrroles for organic electronics

Cigánek, Martin January 2017 (has links)
This diploma thesis describes organic pigments of diketopyrrolopyrroles (DDPs) possessing properties applicable in attractive and perspective areas of organic electronics and photonics. The modification of the DPP skeleton was performed by nucleophilic substitution by various alkyl chains and 5 series of DPP derivatives were prepared. The regioselectivity of N-alkylation and also the photophysical properties of the prepared derivatives were studied. A key product of this work is the N,N'-ethyladamantyl derivative of DPP, which exhibited ambipolar characteristic with excellent electron mobility of 0.2 cm2 V–1 s–1. Further, the -conjugation of the above-mentioned DPP derivative was extended by 1 and 2 thiophene units at positions 3,6 and the effect of this modification on optical properties of the resulting derivatives was investigated. A new modified N,N'-unsubstituted DPP derivative was also prepared. The last point of this thesis was the study of the incorporation of formyl functional groups into the skeleton of key N,N'-ethyladamantyl DPP derivative.
8

Elektrické transportní vlastnosti molekulárních materiálů pro pokročilé aplikace / Electrical transport properties of molecular materials for smart applications

Ivancová, Anna January 2012 (has links)
This master´s thesis deals with possibilities of application of new organic molecular materials for electronic devices. Nowadays it is a very attractive field of research, because of the tendencies in industry to miniaturize, reduce production costs and develop new, eco-friendlier, processes of production. The theoretical part of the thesis provides a short overview of organic materials suitable for smart applications and thin films issues including their characterization. The experimental part is dedicated to means how to prepare thin-film electronic components to silicon wafers for thin films field effect transistors. The obtained results in the last part of thesis are discussed about properties of prepared thin films, in the concrete about the electrical transport properties, in the connection with the condition of preparation.
9

Studium vztahu mezi strukturou a vlastnostmi derivátů diketopyrolopyrolů / Study of structure-property relationship of diketopyrrolopyrrole derivatives

Vrchotová, Jana January 2011 (has links)
This master´s thesis deals with new perspective organic molecular materials. A theoretical part contains search themed on organic materials for optical and electronic devices with emphasis on diketopyrrolopyrrole derivatives. The aim of the experimental part was preparation of solutions, thin layers and prototypical planar electronic components from chosen diketopyrrolopyrrole derivatives and their optical and electric characterization. Obtained results are interpreted with perspective on application in organic electronic.
10

High Charge Carrier Mobility Polymers for Organic Transistors

Erdmann, Tim 10 March 2017 (has links) (PDF)
I) Introduction p-Conjugated polymers inherently combine electronic properties of inorganic semiconductor crystals and material characteristics of organic plastics due to their special molecular design. This unique combination has led to developing new unconventional optoelectronic technologies and, further, resulted in the evolution of semiconducting polymers (SCPs) as fundamental components for novel electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) and organic solar cells (OSCs).[1–5] Moreover, the material flexibility, capability for thin-film formation, and solution processibility additionally allow utilizing modern printing technologies for the large-scale fabrication of flexible, light-weight organic electronics. This especially enables to significantly increase the production speed and, moreover, to drastically reduce the costs per unit.[6, 7] In particular, transistors are the most important elements in modern functional electronic devices because of acting as electronic switches in logic circuits or in displays to control pixels. However, due to molecular arrangement and interactions, the electronic performance of SCPs cannot compete with the one of monocrystalline silicon which is used in state-of-the-art high-performance microtechnology.[5, 8] Nonetheless, intensive and continuing efforts of scientists focused on improving the performance of OFETs, with the special focus on the charge carrier mobility, by optimizing the polymer structure, processing conditions and OFET device architecture. By this, it was possible to identify crucial relationships between polymer structure, optoelectronic properties, microstructure, and OFET performance.[8] Nowadays, the interdisciplinary scientific success is represented by high-performance SCPs with charge carrier mobilities exceeding the value of amorphous silicon.[3, 9] However, further research is essential to enable developing the next generation of electronic devices for application in healthcare, safety technology, transportation, and communication. II) Objective and Results Within the scope of this doctoral thesis, current high-performance p-conjugated SCPs should be studied comprehensively to improve the present understanding about the interdependency between molecular structure, material properties and charge transport. Therefore, the extensive research approaches focused on different key aspects of high charge carrier mobility polymers for organic transistors. The performed investigations comprised the impact of, first, novel design concepts, second, precise structural modifications and, third, synthetic and processing conditions and led to the major findings listed below. 1. The design concept of tuning the p-conjugation length allows to gradually modulate physical material properties and demonstrates that a strong localization of frontier molecular orbitals in combination with a high degree of thin-film ordering can provide a favorable platform for charge transport in p-conjugated semiconducting polymers.[1] 2. The replacement of thiophene units with thiazoles in naphthalene diimide-based p- conjugated polymers allows to increase interchain interactions and to lower frontier molecular orbitals. This compensates the potentially detrimental enhancement of backbone torsion and drives the charge transport to unipolar electron transport, whereas mobility values are partially comparable with those of the respective thiophene containing analogs. 3. p-Conjugated diketopyrrolo[3,4-c]pyrrole-based copolymers can be synthesized within fifteen minutes what, in combination with avoiding aqueous washings and optimizing processing conditions, allowed an increase in morphological and energetic order and, thus, improved the charge transport properties significantly. III) Conclusion The key findings of this doctoral thesis provide new significant insights into important aspects of designing, synthesizing and processing high charge carrier mobility polymers. By this, they can guide future research to further improve the performance of organic electronic devices - decisive for driving the development and fabrication of smart, functional and wearable next-generation electronics. References [1] T. Erdmann, S. Fabiano, B. Milián-Medina, D. Hanifi, Z. Chen, M. Berggren, J. Gierschner, A. Salleo, A. Kiriy, B. Voit, A. Facchetti, Advanced Materials 2016, 28 (41), 9169–9174, DOI:10.1002/adma.201602923. [2] Y. Karpov, T. Erdmann, I. Raguzin, M. Al-Hussein, M. Binner, U. Lappan, M. Stamm, K. L. Gerasimov, T. Beryozkina, V. Bakulev, D. V. Anokhin, D. A. Ivanov, F. Günther, S. Gemming, G. Seifert, B. Voit, R. Di Pietro, A. Kiriy, Advanced Materials 2016, 28 (28), 6003–6010, DOI:10.1002/adma.201506295. [3] A. Facchetti, Chemistry of Materials 2011, 23 (3), 733–758, DOI:10.1021/cm102419z. [4] A. J. Heeger, Chemical Society Reviews 2010, 39, 2354–2371, DOI:10.1039/B914956M. [5] H. Klauk, Chemical Society Reviews 2010, 39, 2643–2666, DOI:10.1039/B909902F. [6] S. G. Bucella, A. Luzio, E. Gann, L. Thomsen, C. R. McNeill, G. Pace, A. Perinot, Z. Chen, A. Facchetti, M. Caironi, Nature Communications 2015, 6, 8394, DOI:10.1038/ncomms9394. [7] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290 (5499), 2123–2126, DOI:10.1126/science.290.5499.2123. [8] D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, H. Sirringhaus, Nature 2014, 515 (7527), 384–388, DOI:10.1038/nature13854. [9] S. Holliday, J. E. Donaghey, I. McCulloch, Chemistry of Materials 2014, 26 (1), 647–663, DOI: 10.1021/cm402421p.

Page generated in 0.0616 seconds