11 |
Applications d'une diphosphine monoxydée comme ligand chiral en catalyse asymétriqueDesrosiers, Jean-Nicolas January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
12 |
Kinetic Studies on C‐h Bond Activation in the Reaction of Triosmium Clusters with Diphosphine and Amidine LigandsYang, Li 12 1900 (has links)
The reaction of 1-(diphenylphosphino)-2-(diphenylphosphito)benzene (PP*) and Os3(CO)10(ACN) has been investigated. A combined experimental and computational study on the isomerization of 1,2-Os3(CO)10[μ-1,2-Ph2P(C6H4)P(OPh)2] (A) and 1,1-Os3(CO)10[μ-1,2-Ph2P(C6H4)P(OPh)2] (B) and reversible ortho-metalation exhibited by the triosmium cluster B are reported. The subsequent conversion of cluster B to the hydrido cluster HOs3(CO)9[μ-1,2-PhP(C6H4-η1)C6H4P(OPh)2] (E) and the benzyne-substituted cluster HOs3(CO)8(µ3-C6H4)[μ-1,2-PhP(C6H4)P(OPh)2] (N) has been established. All of these new clusters have been isolated and fully characterized in solution by IR and NMR spectroscopy; in addition, X-ray diffraction analyses have been performed on the clusters A, B, J, and N. The ortho-metalation reaction that gives cluster E is shown to be reversible, and the mechanism has been probed using selectively deuterated PP* isotopomers. Kinetic and thermodynamic isotope data, in conjunction with DFT calculations, are presented that support the existence of an intermediate unsaturated cluster in the ortho-metalation reaction. Due to interest in the coordination chemistry of formamidines, the non-symmetric amidine ligands PhNC(Me)NHPri, PhNC(Et)NHPri, and (2,4,6-Me3C6H2)NC(Me)NHPri, have been synthesized, and their reaction with Os3(CO)10(MeCN)2 has been investigated. Of the twelve new clusters prepared in section, seven have been structurally characterized by X-ray crystallography.
|
13 |
Silver(I) and Copper(I) Complexes from Homoleptic to Heteroleptic: Synthesis, Structure and CharacterizationAlmotawa, Ruaa Mohammed 12 1900 (has links)
A plethora of novel scientific phenomena and practical applications, such as solid-state
molecular solar cells and other optoelectronic devices for energy harvesting and lighting
technologies, have catalyzed us to synthesize novel compounds with tunable properties. Synthetic
routes, single crystal structures, and spectral and materials properties are described. Reactions of
Ag(I) and Cu(I) precursors with various types of ligands -- including the azolates, diimines, and
diiphosphines -- lead to the corresponding complexes in high yield. Varying the metal ions,
ligands, synthetic methods, solvents, and/or stoichiometric ratio can change the properties
including the molecular geometry or packing structure, reactivity, photophysical and
photochemical properties, semiconducting behavior, and/or porosity of the functional coordination
polymers obtained. For solar cells purposes, the absorption energy can be extended from the
ultraviolet (UV) region, through the entire visible (Vis) region, onto a significant portion of the
near-infrared (NIR) portion of the solar spectrum with high absorption coefficients due to the
infinite conjugation of Cu(I) with diimine ligands. Twenty-eight crystal structures were obtained
by conventional crystal growth methods from organic solvents, whereas their bulk product
syntheses also included "green chemistry" approaches that precluded the use of hazardous organic
solvents. The resulting products are characterized by powder x-ray diffraction (PXRD), Fourier
transform infrared (FTIR), nuclear magnetic resonance (NMR), UV/Vis/NIR absorption/diffuse
reflectance/photoluminescence spectroscopies, and thermogravimetric analysis (TGA).
Regarding the scientific phenomena investigated, the highlighting work in this dissertation
is the discovery of novel bonding/photophysical/optoelectronic properties of the following
materials: a black absorber with absorption from 200- 900 nm, a very stable compound with a
bright green luminescence obtained by a solventless reaction, and a novel coordination polymer
showing uncommon interaction of Ag(I) with three different types of diimine ligands
simultaneously.
|
14 |
Synthèse de nouveaux ligands hémilabiles chiraux : application à la synthèse énantiosélectiveBonnaventure, Isabelle January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
15 |
Synthèse de nouveaux ligands hémilabiles chiraux : application à la synthèse énantiosélectiveBonnaventure, Isabelle January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
16 |
Solid phase strategies for the preparation of phosphorus ligand librariesSamuels, Michiel C. January 2014 (has links)
Catalysis plays a key role in chemical conversions by making them faster and more selective. Despite its widespread use and decades of academic and industrial research, limited catalyst selectivity and stability still call for major improvements in catalyst performance to meet the demands of a sustainable society. Phosphine ligands are ubiquitous in transition metal chemistry and lead to extremely reactive and versatile homogeneous catalysts. Fast development of tailor-made catalysts and catalyst recovery are key issues in (asymmetric) homogeneous catalysis. Therefore libraries of ligands have to be synthesised and screened in an efficient way, which could be facilitated by Solid Phase Synthesis (SPS). Currently, most polymer bound ligands are anchored to the support after the synthesis in solution. However, the main advantages of synthesising the ligands directly on the polymeric support are not only easy catalyst recycling and product separation, but also the ease of purification during the synthesis steps, namely by simple washing and filtration. The use of SPS is very efficient for high throughput synthesis and screening of ligand libraries, however applications of SPS towards libraries of phosphorus ligands are rare, because the synthetic methodologies are still lacking. Here we present the development of methodologies towards novel immobilised bis(phosphine) ligands synthesised on polystyrene and JandaJel™ resin. By performing the synthesis steps on a solid support, the advantages of SPS are fully utilised. Successful routes have been developed towards immobilised secondary phosphine-boranes, which were versatile synthons to prepare a variety of new polymer-supported (C-chiral) bis(phosphine) ligands. These ligands were then tested for their catalytic activity in rhodium catalysed hydrogenation reactions.
|
17 |
Additions catalytiques énantiosélectives de réactifs diorganozinciques utilisant un ligand diphosphine monoxydéCôté, Alexandre January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
18 |
Synphos et difluorphos : diphosphines chirales par atropoisomérie. Évaluation des propriétés stériques et électroniques, synthèse d'analogues et applications en catalyse asymétriqueJeulin, Séverine 05 December 2005 (has links) (PDF)
Aucun !
|
19 |
Optically active [(j6-arene)Cr(CO)3]-based diphosphines synthesis and application in asymmetric homogeneous hydrogenation /Alberico, Elisabetta. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
|
20 |
Synthesis, characterization and anticancer studies of Osmium-cymene complexes with O,O'- and P,P'-chelators as well as monodentate N- and P-donar ligandsTapala, Kgaugelo Cornelius 08 1900 (has links)
Seventeen novel osmium cymene complexes with O,O′- and P,P′-chelating ligands as well as N- and P-monodentate ligands are reported. The osmium cymene complexes were synthesised and characterised by spectroscopic techniques (NMR, IR and Raman), elemental analysis, thermal analysis, conductivity studies and X-ray crystallography. The molecular structures of complexes 1(b), 2, 4, 6, 7(a)-(d) and 11 in this study are reported. The cymene rings of these complexes show different conformations due to loss of planarity influenced by the ancillary ligands as a result of ML back bonding.
Osmium cymene complexes of the type [Os(η6-p-cymene)BrL2]+ (where L2 = chelating P,P′ ligand) and binuclear [{Os(η6-p-cymene)Br2}2 L2] (where L2 = bridging P,P′ ligand) were evaluated for anticancer activity against renal, melanoma, breast and HeLa cancer cells. The chelated-diphosphine osmium cymene complexes exhibited significant anticancer activities relative to the bridged-diphosphine osmium analogues. A series of O,O′-chelated osmium complexes exhibited moderate and poor anticancer activities. / Chemistry / M. Sc. (Chemistry)
|
Page generated in 0.0539 seconds