• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and Theoretical Investigations of Anion-pi Interactions Metallacyclic Architectures of First-Row Transition Metals and N-Heteroaromatic Ligands

Giles, Ian 2012 May 1900 (has links)
Research into anion-pi interactions has shifted from attempts to establish the legitimacy of the interaction to the incorporation of anion-pi interactions into supramolecular architectures. The research discussed in this dissertation explores the subtle effects of ligand, anion, and metal ion on supramolecular architectures of tetrazine-based ligands in the context of anion-pi interactions and their importance in the design and synthesis of supramolecular architectures. Computational studies highlight the importance of the arene quadrupole moment, molecular polarizability, and substituent effects on the strength of anion-pi interactions. More importantly, however, this work establishes that there is a distinct directionality inherent to the anion-pi interaction between polyatomic anions and N-heterocycles, which can be used to direct ligands in supramolecular architectures as demonstrated through the work of the Dunbar group in recent years, particularly that of the square and pentagonal metallacycles. The extension of metallacycles of bptz to CoII and FeII demonstrates the ability to tune the size of the metallacyclic cavity by simply changing the metal ion and results in the surprising encapsulation of two [SbF6]- anions in [Fe5(bptz)5(NCCH3)10][SbF6]10. 1H NMR spectroscopy and electrochemical studies reveal slight but significant differences characteristic of the square and pentagonal metallacycles and support the presence of anion-pi interactions in solution and highlight the importance of the encapsulated anion in the templation and stability of the metallacycles. A study of the interconversion between the square and pentagonal metallacycles via 1H NMR is presented for the first time. Increasing the pi-acidity of the chelating ligand from bptz to bmtz results in the encapsulation of only one [SbF6]- anion in [Fe5(bmtz)5(NCCH3)10][SbF6]10, maximizing anion-pi interactions with the ligand despite the tighter fit. A significant hurdle in the incorporation of different anions into the metallacyclic structures was overcome with the development of a new synthetic protocol for [Fe(NCCH3)6]2+ salts of a wide range of anions from sodium salts and Fe4Cl8(THF)6. Also, the nuclearity of the less stable [Fe5(bptz)5(NCCH3)10][PF6]10 metallacycle was established via a combination of MS, electrochemistry and 1H NMR experiments through comparisons with known FeII metallacycle solution behavior.
2

Platinum Complexes and Zinc Finger Proteins: From Target Recognition to Fixation

Tsotsoros, Samantha 01 January 2014 (has links)
Bioinorganic chemistry strives to understand the roles of metals in biological systems, whether in the form of naturally occurring or addition of non-essential metals to natural systems. Metal ions play vital roles in many cellular functions such as gene expression/regulation and DNA transcription and repair. The study of metal-protein-DNA/RNA interactions has been relatively unexplored. It is important to understand the role of metalloprotein interactions with DNA/RNA as this enhanced knowledge may lead to better understanding of diseases and therefore more effective treatments. A major milestone in the development of this field was the discovery of the cytotoxic properties of cisplatin in 1965 and its FDA approval in 1978. Since then, two other chemotherapeutic drugs containing platinum, carboplatin and oxaliplatin, have been used in the clinic. These three compounds are all bifunctional with the ligands surrounding platinum In the cis conformation and rearrangement of the ligands to the trans orientation results in a loss of cytotoxic properties due to rapid deactivation through binding to S-containing proteins. This enhanced reactivity yields new opportunities to study the reactions between proteins and DNA. One of the first crosslinking experiments used transplatin to crosslink NCp7 to viral RNA in order to understand how/where the protein bound to RNA. We have studied the interaction between cis and trans dinuclear platinum complexes and the C-terminal zinc finger (ZF). The trans complex reacts at a faster rate than the cis isomer and causes N- terminal specific cleavage of the ZF. The dinuclear structure plays a critical role in the peptide cleavage as studies with transplatin (the mononuclear derivative) does not result in cleavage. Monofunctional trans platinum-nucleobase complexes (MPNs) serve as a model for the binding of transplatin to DNA. This provides an interesting opportunity to study their reactions with S-containing proteins, such as HIV1 NCp7. MPNs have been shown to bind to the C-terminal ZF of HIV1 NCp7, resulting in zinc ejection. This occurs through a two-step process where the nucleobase π-stacks with Trp37 on the ZF, followed by covalent binding at the labile Cl site to Cys. MPNs have also shown antiviral activity in vitro. The labile Cl on MPNs reduces specificity of these compounds, as it leaves an available coordination site on the platinum center for binding to other S-proteins or DNA. Therefore, we have moved to an inert PtN4 coordination sphere, [Pt(dien)L]2+ (dien= diethylenetri- amine). Due to the strong bond between platinum and nitrogen, covalent reactions are highly unlikely to occur at rapid rates. The strength of the pi-stacking interaction between nucleobases (free and platinated) and the aromatic amino acid, tryptophan (Trp), showed an enhanced binding constant for platinated nucleobases. This was confirmed by density functional theory (DFT) calculations as the difference in energy between the HOMO of Trp and the LUMO of the nucleobase was smaller for the platinum complex. The studies were extended to the Trp-containing C-terminal ZF of HIV1 NCp7 and an increase in association constant was seen compared to free Trp. Reaction of PtN4 nucleobases compounds with a short amino acid sequence con- taining either Ala (no pi-stacking capabilities) or Trp (pi-stacking interactions) revealed an enhanced rate of reactivity for the Trp-containing peptide. This result supports the theory of a two-step reaction mechanism where the platinum-nucleobase complex recognizes the pep- tide through a pi-stacking interaction with Trp followed by covalent binding to the platinum center. The [Pt(dien)L]2+ motif allows for systematic modification of the structural elements surrounding platinum in a search for the most effective compound. Methylation of the dien ligand should, in theory, increase lipophilicity of the compounds, however, due to 2+ charge of the compounds, this simple association does not hold true. Analysis of the cellular accumulation profiles showed little change in the uptake with the addition of methyl groups to the dien ligand, in agreement with the non-linear change in lipophilicity. Modification of L using different nucleobases allows for the tuning of the strength of the π-stacking interaction between Trp and the platinum complex. The addition of inosine (which lacks a H-bonding donor/acceptor at the C2 position) resulted in a lower association constant with both N-AcTrp and the C-terminal zinc finger of HIV1 NCp7. Interestingly, the addition of xanthosine resulted in an ehanced pi-stacking interaction with the C-terminal zinc finger of HIV1 NCp7; likely as a results of the addition of a H-bonding donor (double-bonded O) at the C2 position. The ability of PtN4 nucleobase complexes to inhibit formation of the NCp7 complexation with viral RNA was studied by mass spectrometry and gel electrophoresis. Dissociation of the NCp7-RNA complex was seen upon addition of PtN4 compounds. These compounds were also able to retard formation of the NCp7-RNA complex when pre-incubated with the protein. These results have important implications as inhibition of complex formation between NCp7 and viral RNA has negative implications for viral replication. Despite the success of platinum-nucleobase compounds, it is important to evaluate all potential pi-stacking ligands. A series of pyridine- and thiazole-based compounds were evaluated for the strength of the pi-stacking interaction with N-AcTrp and the C-terminal ZF of HIV1 NCp7. There was notable increase in association constant for the platinum- DMAP (4-dimethylaminopyridine) complex compared to other ligands studied. This result highlights the importance of exploring multiple avenues for the design of specifically targeted inhibitors and further confirms the viability of the medicinal chemistry dual approach of target recognition (non-covalent) followed by target fixation (covalent).
3

Structure-Property Relationships of N-Heterocycle Functionalized Triphenylphosphine Oxide-Based Poly (Arylene Ether)s

Meyer, Luke January 2018 (has links)
No description available.
4

Synthesis of Ligands and Macrocycles Based on 1,3-Diiminoisoindoline and Study of New Highly Fluorescent and Symmetric Pyrrole-BF<sub>2</sub> Chromophores

Tamgho, Ingrid-Suzy January 2014 (has links)
No description available.
5

Réaction d'hydroamination régiosélective catalysée par des sels de lithium ou par des complexes d'yttrium, de zirconium ou d'hafnium / Regioselective hydroamination reaction catalyzed by lithium salts or complexes of yttrium, zirconium or hafnium

Germain, Stephane 31 October 2014 (has links)
L’addition d’une liaison N-H sur une double liaison carbone-carbone, nommée réaction d’hydroamination (HA), constitue une voie efficace pour accéder à la formation de composés azotés à partir de précurseurs simples en une seule étape. Des progrès considérables ont été réalisés au cours de ces dernières années dans l’élaboration de systèmes catalytiques efficaces pour cette réaction d’intérêt sur des alcènes. Malgré tout de nombreux défis subsistent car peu de catalyseurs disposent d’un large champ d’application ou encore ils sont limités dans la catalyse de la version intermoléculaire de la réaction à la fois moins favorisée cinétiquement comme thermodynamiquement. Au cours de ces travaux le mécanisme réactionnel, d’activation de la réaction d’HA intramoléculaire, par un complexe d’yttrium a pu être déterminé suite à une étude cinétique. Cette dernière a permis de mesurer un ordre partiel en catalyseur de 1 et un ordre inverse en substrat. D’autre part, le potentiel dans la réaction d’HA de plusieurs systèmes catalytiques basés sur différents groupes de métaux a été évalué. Des complexes pinces tridentes de zirconium ou de hafnium sous forme neutre comme sous forme cationique ont montré de bonnes activités dans la réaction de cyclisation de plusieurs aminoalcènes comportant des amines primaires ou secondaires. L’utilisation d’un complexe d’yttrium a permis d’accéder à une large gamme d’arylethylamines de manière totalement régiospécifique par catalyse de la réaction intermoléculaire d’HA entre des amines secondaires faiblement encombrées et des dérivés du styrène. Ce faisant une étude structure-activité a été conduite mettant à jour une activité remarquable du complexe d’yttrium dans la réaction d’HA intermoléculaire sur la 2-vinylpyridine, ce qui a également permis de montrer une application en procédure tandem de double hydroamination. Enfin une procédure simple de catalyse de la réaction d’HA intermoléculaire sur des dérivés du styrène a pu être mise au point suite à l’utilisation d’un sel de lithium actif à température ambiante. / The addition reaction of an amine across a carbon-carbon double bond, the so-called hydroamination reaction, is one of the most efficient method for the formation of value-added nitrogen-containing compounds. During the last decade, the interest of the scientific community has led to the development of a large number of efficient catalysts for this transformation. Nevertheless many challenges remain. Indeed only a few of the reported catalysts have a wide range of applications or possess good activities in the field of the intermolecular version of the reaction, less favored both kinetically and thermodynamically. In these work the mechanism of intramolecular HA reaction catalyzed by an yttrium complex has been determined by a kinetic study. During the latter a partial order of 1 for the catalyst and a reverse order in substrate were measured. The potential in the HA reaction of several catalytic systems based on different metals was evaluated. Tridentate complexes of zirconium or hafnium in their neutral or cationic form showed good activity in the cyclization reaction of several aminoalkenes bearing primary or secondary amines. The use of an yttrium complex allowed a regiospecific access to wide range of arylethylamines by catalysis of the intermolecular HA reaction between weakly hindered secondary amines and styrene derivatives. A structure-activity study was conducted pointing the noteworthy activity of the yttrium complex in the intermolecular HA reaction with 2-vinylpyridine, which also allowed an application in a tandem di-hydroamination reaction. Finally, a simple procedure for catalyzing the intermolecular HA reaction of styrene derivatives has been developed by using a lithium salt active at room temperature.
6

Synthèse de nouveaux ligands hémilabiles chiraux : application à la synthèse énantiosélective

Bonnaventure, Isabelle January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
7

Synthèse de nouveaux ligands hémilabiles chiraux : application à la synthèse énantiosélective

Bonnaventure, Isabelle January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Page generated in 0.0335 seconds