• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 9
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance analysis of angle of arrival estimation algorithms in a multi source environment including mutual coupling effects and compensation techniques

Asif, Rameez, Abd-Alhameed, Raed, Alhassan, H., Noras, James M., Jones, Steven M.R., Jameel, H., Mirza, Ahmed F. January 2014 (has links)
No / The performances of two different angle of arrival estimation algorithms, phase interferometry and covariance based super resolution, and two different mutual coupling compensation methods, conventional and received mutual impedance, have been compared. Two different scenarios have been explored, firstly with a single source transmitter, and then with dual source transmitters. Different powers levels were used to estimate the performance of these algorithms in a multipath/multisource environment over a perfect ground plane. The results show greater accuracy using the covariance based technique, and also support the use of the received mutual impedance method for coupling compensation.
2

Novel Antenna Designs for WLAN Access Points

Hsiao, Fu-Ren 05 May 2004 (has links)
Novel and low-cost antennas suitable for WLAN access points are presented. The operating bandwidths of the proposed antennas can cover the 2.4/5.2/5.8 GHz WLAN bands, and the antenna gain is larger than 2 and 4 dBi in the 2.4 and 5 GHz bands; respectively. Besides, they can also generate the good omnidirectional radiation patterns in the azimuthal plane. Dipole antenna, folded dipole antenna, monopole antenna and circularly polarized antenna has been applied in the proposed designs, and good antenna performance has been obtained.
3

Performance enhancement of ultra wideband antennas for communication and microwave imaging applications

Mohamed, Abdelhalim Mohamed Mamdouh 12 January 2012 (has links)
This thesis investigates omnidirectional and directional ultra wideband (UWB) antennas for communication and microwave imaging applications. To reduce interference with existing technologies, monopole antennas with efficient band-stop functions are introduced. Single and double slots acting as series resonators are used. Reduction in the antenna gain in the stop-band regions of about 19.5 dB is achieved. Central metal removal and ground plane size effects on the antenna performance are investigated. To eliminate signal distortion caused by such monopole antennas, phase centre behaviour over the entire frequency band of operation is investigated at different principle planes, which have not been done before. This study will also show how these antennas act in different communication scenarios and where the radiation will be coming from at different frequencies. The effect of including different slots with different shapes on the performance of phase centre of these antennas is also investigated. Different methods to minimize the antenna phase centre movement are studied. Novel microstrip antennas with UWB impedance and radiation pattern bandwidth and low cross polarization components are introduced to work over the frequency band from 3 to 20 GHz. The antennas introduced are double-layer structures in which the radiator is sandwiched between two identical partial ground planes or a partial ground plane is sandwiched between two radiators. Results show a significant reduction in the cross polarization components at all frequencies. A novel high gain UWB Vee dipole antenna with a UWB coaxial balun feed is introduced to cover the existing and future UWB communication applications. Different type of loadings such as a reflecting ground below the antenna, a dielectric sleeve over the UWB balun and conical dielectrics between the Vee plates are also used and studied that show enhanced gains and lower sidelobes. A miniaturized-type UWB Vee dipole antenna is also investigated for microwave imaging applications. The antenna has a small radiation aperture which makes it a good candidate for array type applications. Full wave analysis of studied antennas are done using Ansoft HFSS, finite-element-methods based software. Experimental investigations are done to confirm the accuracy of simulated results.
4

Performance enhancement of ultra wideband antennas for communication and microwave imaging applications

Mohamed, Abdelhalim Mohamed Mamdouh 12 January 2012 (has links)
This thesis investigates omnidirectional and directional ultra wideband (UWB) antennas for communication and microwave imaging applications. To reduce interference with existing technologies, monopole antennas with efficient band-stop functions are introduced. Single and double slots acting as series resonators are used. Reduction in the antenna gain in the stop-band regions of about 19.5 dB is achieved. Central metal removal and ground plane size effects on the antenna performance are investigated. To eliminate signal distortion caused by such monopole antennas, phase centre behaviour over the entire frequency band of operation is investigated at different principle planes, which have not been done before. This study will also show how these antennas act in different communication scenarios and where the radiation will be coming from at different frequencies. The effect of including different slots with different shapes on the performance of phase centre of these antennas is also investigated. Different methods to minimize the antenna phase centre movement are studied. Novel microstrip antennas with UWB impedance and radiation pattern bandwidth and low cross polarization components are introduced to work over the frequency band from 3 to 20 GHz. The antennas introduced are double-layer structures in which the radiator is sandwiched between two identical partial ground planes or a partial ground plane is sandwiched between two radiators. Results show a significant reduction in the cross polarization components at all frequencies. A novel high gain UWB Vee dipole antenna with a UWB coaxial balun feed is introduced to cover the existing and future UWB communication applications. Different type of loadings such as a reflecting ground below the antenna, a dielectric sleeve over the UWB balun and conical dielectrics between the Vee plates are also used and studied that show enhanced gains and lower sidelobes. A miniaturized-type UWB Vee dipole antenna is also investigated for microwave imaging applications. The antenna has a small radiation aperture which makes it a good candidate for array type applications. Full wave analysis of studied antennas are done using Ansoft HFSS, finite-element-methods based software. Experimental investigations are done to confirm the accuracy of simulated results.
5

High performance on-chip array antenna based on metasurface feeding structure for terahertz integrated circuits

Alibakhshikenari, M., Virdee, B.S., See, C.H., Abd-Alhameed, Raed, Limiti, E. 06 1900 (has links)
Yes / In this letter a novel on-chip array antenna is investigated which is based on CMOS 20μm Silicon technology for operation over 0.6-0.65 THz. The proposed array structure is constructed on three layers composed of Silicon-Ground-Silicon layers. Two antennas are implemented on the top layer, where each antenna is constituted from three sub-antennas. The sub-antennas are constructed from interconnected dual-rings. Also, the sub-antennas are interconnected to each other. This approach enhances the aperture of the array. Surface waves and substrate losses in the structure are suppressed with metallic via-holes implemented between the radiation elements. To excite the structure, a novel feeding mechanism is used comprising open-circuited microstrip lines that couple electromagnetic energy from the bottom layer to the antennas on the top-layer through metasurface slot-lines in the middle ground-plane layer. The results show the proposed on-chip antenna array has an average radiation gain, efficiency, and isolation of 7.62 dBi, 32.67%, and -30 dB, respectively. / H2020-MSCA-ITN-2016 SECRET-722424 and the financial support from the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E0/22936/1
6

DESIGN OF A RACE CAR TELEMETERING SYSTEM

Ameri, K. Al, Hanson, P., Newell, N., Welker, J., Yu, K, Zain, A. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This student paper was produced as part of the team design competition in the University of Arizona course ECE 485, Radiowaves and Telemetry. It describes the design of a telemetering system for race cars. Auto Racing is an exciting sport where the winners are the ones able to optimize the balance between the driver’s skill and the racing teams technology. One of the main reasons for this excitement is that the main component, the race car, is traveling at extremely high speeds and constantly making quick maneuvers. To be able to do this continually, the car itself must be constantly monitored and possibly adjusted to insure proper maintenance and prevent damage. To allow for better monitoring of the car’s performance by the pit crew and other team members, a telemetering system has been designed, which facilitates the constant monitoring and evaluation of various aspects of the car. This telemetering system will provide a way for the speed, engine RPM, engine and engine compartment temperature, oil pressure, tire pressure, fuel level, and tire wear of the car to be measured, transmitted back to the pit, and presented in a way which it can be evaluated and utilized to increase the car’s performance and better its chances of winning the race. Furthermore, this system allows for the storing of the data for later reference and analysis.
7

Wideband Active and Passive Antenna Solutions for Handheld Terminals

Lindberg, Peter January 2007 (has links)
This thesis presents solutions and studies related to the design of wideband antennas for wireless handheld terminal applications. A method of electrically shortening the terminal chassis length to obtain resonance at high frequencies has been proposed and evaluated, thereby increasing the antennas impedance bandwidth. No significant effect on the lower frequency band in a dual-band antenna prototype has been observed, making the method suitable for multi-band applications. The chassis has further been utilized as a zero-thickness 0.9 - 2.7 GHz high efficiency antenna by inserting a notch in the chassis center, and a feasibility study for typical phones has been performed. Additionally, the effect of talk position on the chassis wave-mode has been investigated, where the standard equivalent circuit model for terminal antennas has been modified to include the presence of the users head. The model has been used to explain measured and simulated effects concerning frequency detuning, efficiency reduction and bandwidth enhancements when the terminal is placed in talk position. The use of a hands-free earpiece cord is currently mandatory for FM radio reception as the cord is utilized as antenna. However, there is currently a market driven demand for removing the cord requirement since many modern phones are equipped with speakers and Bluetooth headsets. In this thesis, an active ferrite loop antenna is proposed as an internal replacement/complement with a performance of -23 dB (G/T degradation) compared to a full-size lossless dipole in urban environments. Also, a modification to the cord is suggested for DVB H reception. Complex matching networks have been investigated to increase the bandwidth of dual band PIFA antennas, and a printed dual band dipole has been integrated with a modified Marchand balun for dual resonance at two separate frequency bands, thus covering the commercial cellular bands 824-960 and 1710-2170 MHz with a single antenna.
8

Integrated Antennas : Monolithic and Hybrid Approaches

Öjefors, Erik January 2006 (has links)
<p>This thesis considers integration of antennas and active electronics manufactured on the same substrate. The main topic is on-chip antennas for commercial silicon processes, but hybrid integration using printed circuit board technology is also addressed.</p><p>The possible use of micromachining techniques as a means of reducing substrate losses of antennas manufactured on low resistivity silicon wafers is investigated. Compact dipole, loop, and inverted-F antennas for the 20-40 GHz frequency range are designed, implemented, and characterized. The results show significantly improved antenna efficiency when micromachining is used as a post-processing step for on-chip antennas manufactured in silicon technology.</p><p>High resistivity wafers are used in a commercial silicon germanium technology to improve the efficiency of dipole antennas realized using the available circuit metal layers in the process. Monolithically integrated 24 GHz receivers with on-chip antennas are designed and evaluated with regard to antenna and system performance. No noticeable degradation of the receiver performance caused by cross talk between the antenna and the integrated circuit is observed.</p><p>For low frequency antenna arrays, such as base station antennas, hybrid integration of active devices within the antenna aperture is treated. A compact varactor based phase shifter for traveling wave antenna applications is proposed and evaluated. Electrically steerable traveling wave patch antenna arrays, with the phase shifters implemented in the same conductor layer as the radiating elements, are designed and manufactured in microstrip technology. It is experimentally verified that the radiation from the feed network and phase shifters in the proposed antenna configuration is small.</p>
9

Wideband Active and Passive Antenna Solutions for Handheld Terminals

Lindberg, Peter January 2007 (has links)
<p>This thesis presents solutions and studies related to the design of wideband antennas for wireless handheld terminal applications. A method of electrically shortening the terminal chassis length to obtain resonance at high frequencies has been proposed and evaluated, thereby increasing the antennas impedance bandwidth. No significant effect on the lower frequency band in a dual-band antenna prototype has been observed, making the method suitable for multi-band applications. The chassis has further been utilized as a zero-thickness 0.9 - 2.7 GHz high efficiency antenna by inserting a notch in the chassis center, and a feasibility study for typical phones has been performed. Additionally, the effect of talk position on the chassis wave-mode has been investigated, where the standard equivalent circuit model for terminal antennas has been modified to include the presence of the users head. The model has been used to explain measured and simulated effects concerning frequency detuning, efficiency reduction and bandwidth enhancements when the terminal is placed in talk position.</p><p>The use of a hands-free earpiece cord is currently mandatory for FM radio reception as the cord is utilized as antenna. However, there is currently a market driven demand for removing the cord requirement since many modern phones are equipped with speakers and Bluetooth headsets. In this thesis, an active ferrite loop antenna is proposed as an internal replacement/complement with a performance of -23 dB (G/T degradation) compared to a full-size lossless dipole in urban environments. Also, a modification to the cord is suggested for DVB H reception.</p><p>Complex matching networks have been investigated to increase the bandwidth of dual band PIFA antennas, and a printed dual band dipole has been integrated with a modified Marchand balun for dual resonance at two separate frequency bands, thus covering the commercial cellular bands 824-960 and 1710-2170 MHz with a single antenna.</p>
10

A comprehensive study of resistor-loaded planar dipole antennas for ground penetrating radar applications

Uduwawala, Disala January 2006 (has links)
Ground penetrating radar (GPR) systems are increasingly being used for the detection and location of buried objects within the upper regions of the earth’s surface. The antenna is the most critical component of such a system. This thesis presents a comprehensive study of resistor-loaded planar dipole antennas for GPR applications using both theory and experiments. The theoretical analysis is performed using the finite difference time domain (FDTD) technique. The analysis starts with the most popular planar dipole, the bow-tie. A parametric study is done to find out how the flare angle, length, and lumped resistors of the antenna should be selected to achieve broadband properties and good target detection with less clutter. The screening of the antenna and the position of transmitting and receiving antennas with respect to each other and ground surface are also studied. A number of other planar geometrical shapes are considered and compared with the bow-tie in order to find what geometrical shape gives the best performance. The FDTD simulations are carried out for both lossless and lossy, dispersive grounds. Also simulations are carried out including surface roughness and natural clutter like rocks and twigs to make the modeling more realistic. Finally, a pair of resistor-loaded bow-tie antennas is constructed and both indoor and outdoor measurements are carried out to validate the simulation results. / <p>QC 20100923</p>

Page generated in 0.0628 seconds