1 |
Selective DNA-Directed Assembly on Dual-Functionalized MicroparticlesBajaj, Manish G., Laibinis, Paul E. 01 1900 (has links)
The bottom-up assembly of functional devices requires novel building blocks to facilitate the incorporation of functional and structural hierarchy. Anisotropic building blocks can substantially broaden the creation of self-assembled devices with unique properties because of their morphological and/or chemical asymmetry. In this regard, we have created microspheres with one hemispherical face exposing silica and the other exposing gold. These microspheres were formed by the shadow deposition of gold onto silica microspheres. The two chemical surfaces allowed use of different surface reactions—silane chemistry for the silica side and thiol chemistry for the gold side—for immobilizing different oligonucleotide sequences on each of the two faces. These dual-functionalized microspheres were used in the selective orthogonal assembly of fluorophore-tagged target oligonucleotides. The DNA-directed assembly was confirmed by confocal microscopy of the microspheres. In essence, employing DNA as the linker molecule, these “Janus” particles can be assembled into various novel 1-D, 2-D, and 3-D structures, which are difficult to realize using symmetric building blocks. / Singapore-MIT Alliance (SMA)
|
2 |
Magnetic Nanoparticle Field Directed Self-Assembly: Magnetic Flux Line Mapping and Block Copolymer Driven AssemblySchmidt, Ryan Michael 17 August 2011 (has links)
No description available.
|
3 |
Control of DNA Origami from Self-Assembly to Higher-Order AssemblyJohnson, Joshua A., Dr. 07 October 2020 (has links)
No description available.
|
4 |
Field Assisted Self Assembly for Preferential Vertical Alignment of Particles and Phases Using a Novel Roll-to-Roll Processing LineBatra, Saurabh 29 April 2014 (has links)
No description available.
|
5 |
Energy landscape and electric field mediated interfacial colloidal assemblyBahukudumbi, Pradipkumar 17 September 2007 (has links)
Chemically and physically patterned surfaces can be used as templates to guide
nano- and micro- scale particle assembly, but the design is often limited by an inability
to sufficiently characterize how pattern features influence local particle-surface
interactions on the order of thermal energy, kT. The research outlined in this dissertation
describes comprehensive optical microscopy (i.e. evanescent wave, video)
measurements and analyses of many-body and multi-dimensional interactions, dynamics
and structure in inhomogeneous colloidal fluid systems. In particular, I demonstrate
how non-intrusive observation of an ensemble of particles diffusing past each other and
over a physically patterned surface topography can be used to obtain sensitive images of
energy landscape features. I also link diffusing colloidal probe dynamics to energy
landscape features, which is important for understanding the temporal imaging process
and self-assembly kinetics. A complementary effort in this dissertation investigated the
use of external AC electric fields to reversibly tune colloidal interactions to produce
metastable ordered configurations. In addition, the electrical impedance spectra associated with colloidal assemblies formed between interfacial microelectrode gaps was
measured and consistently modelled using representative equivalent circuits.
Significant results from this dissertation include the synergistic use of the very
same colloids as both imaging probes and building blocks in feedback controlled selfassembly
on patterns. Cycling the AC field frequencies was found to be an effective
way to anneal equilibrium colloidal configurations. Quantitative predictions of
dominant transport mechanisms as a function of AC electric field amplitude and
frequency were able to consistently explain the steady-state colloidal microstructures
formed within electrode gaps observed using video microscopy. A functional electrical
switch using gold nanoparticles was realized by reversibly forming and breaking
colloidal wires between electrode gaps. Extension of the concepts developed in this
dissertation suggest a general strategy to engineer the assembly of colloidal particles into
ordered materials and controllable devices that provide the basis for numerous
emerging technologies (e.g. photonic crystals, nanowires, reconfigurable antennas,
biomimetic materials).
|
6 |
Part 1: Controlling barriers to charge transfer in DNA Part 2: DNA-directed assembly of conducting oligomersGüler, Gözde 17 November 2008 (has links)
A series of anthraquinone-linked DNA oligonucleotides was prepared and the efficiency of long-distance radical cation migration was measured. In one set of oligonucleotides, two GG steps are separated by either a TATA or an ATAT bridge. In these two compounds, the efficiency of radical cation migration from GG to GG differs by more than an order of magnitude. Replacement of the thymines in the TATA or ATAT bridges with 3-methyl-2-pyridone (t, a thymine analog) results in the much more efficient radical cation migration across the bridge in both cases. This is attributed to a decrease in the oxidation potential of t to a value below that of A. In contrast, replacement of the thymines in the TATA or ATAT bridges with difluorotoluene (f, a thymine analog with high oxidation potential) does not measurably affect radical cation migration. These findings are readily accommodated by the phonon-assisted polaron-hopping mechanism for long-distance charge transfer in duplex DNA and indicate that DNA in solution behaves as a polaronic semiconductor.
Oligomers containing thiophene-pyrrole-thiphene (SNS) monomers were covalently linked to the nucleobases of DNA. Treatment of these oligomers with horseradish peroxidase and hydrogen peroxide lead to the formation of conducting oligomers conjoined to the DNA. The DNA template aligns the oligomers along one strand of the duplex and limits the intermolecular reaction of monomers. This method enables utilization of the unique self-recognizing properties and programmability of DNA to create tailored oligomers.
|
7 |
Electrochemical Control for Nanoelectromechanical Device ProductionMoghimian, Nima 24 April 2015 (has links)
Electrochemical synthesis of straight, separable, cylindrical nanowires for use as cantilevered mechanical resonators is the main focus of this dissertation. These types of nanowires are significant for many applications, but particularly so for chip-based
sensor arrays made for ultrasensitive mass detection. Directed-assembly of nanowire-based devices has enabled the development of large-area fabrication of sensor devices with new functions such as cancer detection at early stage.
Chemically stable noble metals gold and rhodium are interesting materials for making nanowire resonators. Gold makes a well-known, stable and strong bond with the thiol group, which enables a range of surface functionalization chemistries. Rhodium nanowires have desirable mechanical properties for resonant mass sensing as they can retain high quality factor (Q-factor) from high vacuum to near atmospheric pressures.
As a versatile and inexpensive tool, electrodeposition provides the most suitable synthesis path for gold and rhodium resonator-grade nanowires in nanoporous templates. In this work, the structural characteristics of nanoporous membranes anodized aluminium oxide and track-etched polycarbonate was explored for use as electrodeposition template. New chemistries for making gold and rhodium nanowires are introduced. Although gold cyanide-based solutions work well for the electrochemical synthesis of separable nanowires, the toxicity of cyanide solutions makes non-cyanide alternatives desirable. However, electrochemical synthesis of gold nanowires in templates from non-cyanide solutions suffers from serious drawbacks. These include growth-arresting pellet formation, poor length control and defects such as inclusions. In this dissertation, the first electrochemical synthesis of straight, cylindrical, separable gold nanowires from a sulfite-based solution is presented. This work demonstrates a scheme that suppresses electroless particle growth in the weakly-complexed gold in solution by proper use of additives.
The electrochemical nucleation and growth of rhodium nanowires from a sulphate-based solution is also discussed. The effect of pH on the length uniformity as well as the effect of EDTA and polyethylenimine as additives on the development of the wire nanostructure was studied. This study has shown that the control over hydrogen co-reduction on the electrode surface and its bubble transport rate allowed for tailoring the nanostructure of the grown nanowires.
The control over electrochemical nucleation and growth of noble metal films for nanowire clamping has also been investigated in this work for making reliable defect-free clamps for nanoresonator measurements. Silver was introduced as a reliable replacement for gold for nanowire clamping. Resonance measurements of rhodium nanowires clamped with silver, confirmed a reliable and repeatable clamp with very small scatter in the plot of resonance frequency variation with appropriate geometric terms. In addition, we found that the elastic modulus of a set of rhodium nanowires synthesized and measured in this work, was 14% larger than in previous studies. / Graduate / 0794 / 0548 / mascotella@gmail.com
|
8 |
Assemblage dirigé de nanoparticules colloïdales par nanoxérographie : développement et application à la réalisation de marquages sécurisés / Assemblage dirigé de nanoparticules colloïdales par nanoxérographie : développement et application à la réalisation de marquages sécurisésMoutet, Pierre 21 November 2014 (has links)
L’assemblage dirigé de nanoparticules colloïdales sur des surfaces est une étape clé pour l’étude et la caractérisation de leurs propriétés physiques, ainsi que pour l’élaboration de dispositifs fonctionnels les intégrant. Ces travaux de thèse portent sur le développement et l’utilisation d’une technique d’assemblage dirigé rapide, applicable à une large gamme de dispersions colloïdales : la nanoxérographie par microscopie à force atomique (AFM). Le protocole de nanoxérographie par AFM est composé de deux étapes : (i) l’injection de motifs de charges dans un matériau électret, suivie (ii) d’un développement dans une dispersion colloïdale permettant de piéger les nanoparticules en quelques secondes seulement sur les motifs de charges par interaction électrostatique. L’ajustement précis des différents leviers expérimentaux et l’utilisation de dispersions colloïdales synthétisées par voie chimique avec des caractéristiques finement contrôlées nous ont permis d’affiner notre compréhension des mécanismes régissant l’assemblage dirigé par nanoxérographie par AFM et de repousser les limites de cette technique sur trois points précis : les assemblages binaires, l’assemblage de nano-objets individuels et les assemblages multi-couches de nano-objets. Les résultats obtenus ont ensuite été mis à profit pour élaborer des étiquettes de marquage sécurisées micrométriques à base de nanocristaux luminescents de NaYF4 dopés avec des terres rares destinées à la lutte anti-contrefaçon et le traçage de produits. / Directed assembly of colloidal nanoparticles is a fundamental step for observation and quantitative measurement of their physical properties, as well as using them for the conception and manufacturing of innovative functional devices. This research aim to enhance a technique used for fast directed assembly of a wide range of colloidal nanoparticles : atomic force microscopy (AFM) nanoxerography. This technique consists of two steps : (i) injection of charge patterns written on a thin layer of electret, followed by (ii) an immersion of the electret into the colloidal solution. This last step allows nearly instantaneous selective deposition of nanoparticles onto the charge patterns. Fine tuning of few experimental levers and chemical synthesis of customized nanoparticles solution with finely tuned physical properties has allowed us to further our understanding of the assembly obtained with AFM nanoxerography mechanics. Three previously known limitations of the technique have been lifted : binary assembly, single nanoparticle assembly and multilayered assembly. Results obtained have then been used to design and produce microtags out of rare-earth based photo-luminescent NaYF4 nanocrystals, with tremendous potential for product traceability and fight against counterfeiting.
|
9 |
Supramolecular electronics : from molecular wires to (semi)conducting materialsMusumeci, Chiara 16 April 2014 (has links) (PDF)
Supramolecular electronics aims to construct and investigate the optoelectronic properties of tailored supramolecular nanoarchitectures. The aim of this thesis is to get control over the organization of organic molecular systems and correlate their structure with the electrical properties, with particular attention at the nanoscale properties. The exploited strategies require a focused molecular design, the balancing of intermolecular and interfacial interactions, a control on the kinetics of the processes and possibly the exploitation of external forces. The presented results showed that understanding the local properties of a material on a nanoscale basis is a huge fundamental challenge to bring solutions to both scientific and technological issues, since in electronic devices the performances are strongly dependent on the order at the supramolecular level.
|
10 |
Parametric studies of field-directed nanowire chaining for transparent electrodesAlsaif, Jehad 25 August 2017 (has links)
Transparent electrodes (TEs) have become important components of displays, touch
screens, and solar photovoltaic (PV) energy conversion devices. As electrodes, they
must be electrically conductive while being transparent. Transparent materials are
normally poor conductors and materials with high electrical conductivity, such as
metals, are typically not transparent. From the few candidate materials, indium
tin oxide (ITO) is currently the best available, but indium is an expensive material
and ITO cost has risen with increasing demand. Therefore, alternative materials
or methods are sought to encourage production needs of applications and help in
reducing their price. This thesis presents and discusses results of experimental work
for a method, field-directed chaining, to produce a TE device which is nanowire-based,
with a figure of merit FoM= 2.39 x10E-4
Ohm E-1, comparable to ITO but with potential
for far lower cost.
Using electric field-directed chaining, multiple parallel long chains of metal nanowires
are assembled on inexpensive transparent materials such as glass by field directed
nanowire chaining, using methods first demonstrated in our laboratory.
In this work, we have improved the fraction of functional chains, by tuning the
field/voltage, a key step in increasing the FoM and lowering the cost. The effect
of operating parameters on TE optical and electrical properties has been studied and identified as well. From experiments with twenty seven substrates, each with
a range of electric field and nanowire concentration, the highest light transmission
achieved is 78% and the lowest sheet resistance achieved is 100 Ohm/sq. Among all
the operating parameters, the electric field has the most significant influence on the
fraction of nanowire chains that are functional. In the operating range of electric field strength available to us, we observed a monotonic increase in the fraction of
functional nanowire chains. We found a counter-intuitive change in TE properties in
a sub-range of nanowire concentration, associated with a change in the structure of
chained patterns. / Graduate
|
Page generated in 0.0562 seconds