Spelling suggestions: "subject:"direction d'l'arrivée"" "subject:"direction d'l’arrivée""
1 |
Traitement d’antenne tensoriel / Tensor array processingRaimondi, Francesca 22 September 2017 (has links)
L’estimation et la localisation de sources sont des problèmes centraux en traitement d’antenne, en particulier en télécommunication, sismologie, acoustique, ingénierie médicale ou astronomie. Une antenne de capteurs est un système d’acquisition composé par de multiples capteurs qui reçoivent des ondes en provenance de sources de directions différentes: elle échantillonne les champs incidents en espace et en temps.Pour cette raison, des techniques haute résolution comme MUSIC utilisent ces deux éléments de diversité, l’espace et le temps, afin d’estimer l’espace signal engendré par les sources incidentes, ainsi que leur direction d’arrivée. Ceci est généralement atteint par une estimation préalable de statistiques de deuxième ordre ou d’ordre supérieur, comme la covariance spatiale de l’antenne, qui nécessitent donc de temps d’observation suffisamment longs.Seulement récemment, l’analyse tensorielle a été appliquée au traitement d’antenne, grâce à l’introduction, comme troisième modalité (ou diversité), de la translation en espace d’une sous-antenne de référence, sans faire appel à l’estimation préalable de quantités statistiques.Les décompositions tensorielles consistent en l’analyse de cubes de données multidimensionnelles, au travers de leur décomposition en somme d’éléments constitutifs plus simples, grâce à la multilinéarité et à la structure de rang faible du modèle sous-jacent.Ainsi, les mêmes techniques tensorielles nous fournissent une estimée des signaux eux-mêmes, ainsi que de leur direction d’arrivée, de façon déterministe. Ceci peut se faire en vertu du modèle séparable et de rang faible vérifié par des sources en bande étroite et en champs lointain.Cette thèse étudie l’estimation et la localisation de sources par des méthodes tensorielles de traitement d’antenne.Le premier chapitre présente le modèle physique de source en bande étroite et en champs lointain, ainsi que les définitions et hypothèses fondamentales. Le deuxième chapitre passe en revue l’état de l’art sur l’estimation des directions d’arrivée, en mettant l’accent sur les méthodes haute résolution à sous-espace. Le troisième chapitre introduit la notation tensorielle, à savoir la définition des tableaux de coordonnées multidimensionnels, les opérations et décompositions principales. Le quatrième chapitre présente le sujet du traitement tensoriel d’antenne au moyen de l’invariance par translation.Le cinquième chapitre introduit un modèle tensoriel général pour traiter de multiples diversités à la fois, comme l’espace, le temps, la translation en espace, les profils de gain spatial et la polarisation des ondes élastiques en bande étroite.Par la suite, les sixième et huitième chapitres établissent un modèle tensoriel pour un traitement d’antenne bande large cohérent. Nous proposons une opération de focalisation cohérente et séparable par une transformée bilinéaire et par un ré-échantillonnage spatial, respectivement, afin d’assurer la multilinéarité des données interpolées.Nous montrons par des simulations numériques que l’estimation proposée des paramètres des signaux s’améliore considérablement, par rapport au traitement tensoriel classique en bande étroite, ainsi qu’à MUSIC cohérent bande large.Egalement, tout au long de la thèse, nous comparons les performances de l’estimation tensorielle avec la borne de Cramér-Rao du modèle multilinéaire associé, que nous développons, dans sa forme la plus générale, dans le septième chapitre. En outre, dans le neuvième chapitre nous illustrons une application à des données sismiques réelles issues d’une campagne de mesure sur un glacier alpin, grâce à la diversité de vitesse de propagation.Enfin, le dixième et dernier chapitre de cette thèse traite le sujet parallèle de la factorisation spectrale multidimensionnelle d’ondes sismiques, et présente une application à l’estimation de la réponse impulsionnelle du soleil pour l’héliosismologie. / Source estimation and localization are a central problem in array signal processing, and in particular in telecommunications, seismology, acoustics, biomedical engineering, and astronomy. Sensor arrays, i.e. acquisition systems composed of multiple sensors that receive source signals from different directions, sample the impinging wavefields in space and time. Hence, high resolution techniques such as MUSIC make use of these two elements of diversities: space and time, in order to estimate the signal subspace generated by impinging sources, as well as their directions of arrival. This is generally done through the estimation of second or higher orders statistics, such as the array spatial covariance matrix, thus requiring sufficiently large data samples. Only recently, tensor analysis has been applied to array processing using as a third mode (or diversity), the space shift translation of a reference subarray, with no need for the estimation of statistical quantities. Tensor decompositions consist in the analysis of multidimensional data cubes of at least three dimensions through their decomposition into a sum of simpler constituents, thanks to the multilinearity and low rank structure of the underlying model. Thus, tensor methods provide us with an estimate of source signatures, together with directions of arrival, in a deterministic way. This can be achieved by virtue of the separable and low rank model followed by narrowband sources in the far field. This thesis deals with source estimation and localization of multiple sources via these tensor methods for array processing. Chapter 1 presents the physical model of narrowband elastic sources in the far field, as well as the main definitions and assumptions. Chapter 2 reviews the state of the art on direction of arrival estimation, with a particular emphasis on high resolution signal subspace methods. Chapter 3 introduces the tensor formalism, namely the definition of multi-way arrays of coordinates, the main operations and multilinear decompositions. Chapter 4 presents the subject of tensor array processing via rotational invariance. Chapter 5 introduces a general tensor model to deal with multiple physical diversities, such as space, time, space shift, polarization, and gain patterns of narrowband elastic waves. Subsequently, Chapter 6 and Chapter 8 establish a tensor model for wideband coherent array processing. We propose a separable coherent focusing operation through bilinear transform and through a spatial resampling, respectively, in order to ensure the multilinearity of the interpolated data. We show via computer simulations that the proposed estimation of signal parameters considerably improves, compared to existing narrowband tensor processing and wideband MUSIC. Throughout the chapters we also compare the performance of tensor estimation to the Cramér-Rao bounds of the multilinear model, which we derive in its general formulation in Chapter 7. Moreover, in Chapter 9 we propose a tensor model via the diversity of propagation speed for seismic waves and illustrate an application to real seismic data from an Alpine glacier. Finally, the last part of this thesis in Chapter 10 moves to the parallel subject of multidimensional spectral factorization of seismic ways, and illustrates an application to the estimation of the impulse response of the Sun for helioseismology.
|
2 |
Analyse de performances en traitement d'antenne. : bornes inférieures de l'erreur quadratique moyenne et seuil de résolution limiteEl Korso, Mohammed Nabil, El Korso, Mohammed Nabil 07 July 2011 (has links) (PDF)
Ce manuscrit est dédié à l'analyse de performances en traitement d'antenne pour l'estimation des paramètres d'intérêt à l'aide d'un réseau de capteurs. Il est divisé en deux parties :- Tout d'abord, nous présentons l'étude de certaines bornes inférieures de l'erreur quadratique moyenne liées à la localisation de sources dans le contexte champ proche. Nous utilisons la borne de Cramér-Rao pour l'étude de la zone asymptotique (notamment en terme de rapport signal à bruit avec un nombre fini d'observations). Puis, nous étudions d'autres bornes inférieures de l'erreur quadratique moyenne qui permettent de prévoir le phénomène de décrochement de l'erreur quadratique moyenne des estimateurs (on cite, par exemple, la borne de McAulay-Seidman, la borne de Hammersley-Chapman-Robbins et la borne de Fourier Cramér-Rao).- Deuxièmement, nous nous concentrons sur le concept du seuil statistique de résolution limite, c'est-à-dire, la distance minimale entre deux signaux noyés dans un bruit additif qui permet une "correcte" estimation des paramètres. Nous présentons quelques applications bien connues en traitement d'antenne avant d'étendre les concepts existants au cas de signaux multidimensionnels. Par la suite, nous étudions la validité de notre extension en utilisant un test d'hypothèses binaire. Enfin, nous appliquons notre extension à certains modèles d'observation multidimensionnels
|
3 |
Tomographie acoustique océanique en guide d'onde : de l'utilisation des temps à celle des angles.Aulanier, Florian 09 December 2013 (has links) (PDF)
Dans l'océan, les changements de température induisent des perturbations de la vitesse de propagation des ondes acoustiques. A partir des fluctuations des signaux acoustiques enregistrés, la tomographie acoustique océanique permet d'imager ces perturbations de vitesse du son. Dans un contexte de double antenne de réception et d'émission, cette thèse propose une méthode alternative utilisant la direction de propagation des ondes acoustiques et ses paramètres physiques associés, direction d'arrivée (DA) et direction de départ (DD), plutôt que les temps de propagation (TP) utilisés classiquement. Nous nous plaçons dans un guide d'onde océanique petit fond ( 100 m), sur une échelle spatiale entre 1 et 10 km, et une résolution spatiale d'environ 10 m horizontalement et 2 m en profondeur. Dans ce cas, les ondes acoustiques basses fréquences (1 kHz) se réfléchissent sur les interfaces du guide d'ondes et se propagent entre une source et un récepteur, en suivant des trajectoires multiples. Après extraction des TP, DA et DD par double formation de voies, et dans l'hypothèse de faibles perturbations, nous relions linéairement les variations des TP, DA et DD aux perturbations de la distribution de vitesse du son de manière analytique. Cette formulation, basée sur la physique de la diffraction de Born au 1er ordre, utilise des fonctions appelées : noyaux de sensibilité temps-angles (NSTA). Ainsi après avoir traiter le problème direct, l'utilisation de méthodes d'inversion nous permet alors de retrouver les perturbations de vitesse à partir des variations de TP, DA et DD en utilisant les NSTA. Dans cette thèse, nous montrons que l'inversion utilisant uniquement les angles est identique à celle classiquement réalisée avec les temps. Cette méthode nouvelle de tomographie acoustique, a été validée sur données simulées, et sur des données réelles d'expériences à échelle réduites.
|
Page generated in 0.0985 seconds