• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

AnÃlise NumÃrica do Acoplador Duplo NÃo-Linear Baseado em Fibras de Cristais FotÃnicos (NLDC-PCF) Operando com PAM e PWM para ObtenÃÃo de Portas LÃgicas / Numerical Analysis of Nonlinear Dual Core Coupler Based on Photonic Crystal Fibers (PCF-NLDC) Operating with PAM and PWM for Obtaining Logic Gates

Marcos Benedito Caldas Costa 01 January 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Neste trabalho, apresentamos uma anÃlise numÃrica para a obtenÃÃo de portas lÃgicas totalmente Ãptica baseada em um acoplador direcional nÃo-linear simÃtrico (NLDC) em fibras de cristal fotÃnico (PCF). O projeto mais comumente usado para o NLDC-PCF à uma fibra holey, utilizada neste trabalho, em que a seÃÃo transversal à uma matriz periÃdica de buracos de ar que se prolonga por todo o comprimento da fibra, operando com dois pulsos de luz ultracurtos na forma de sÃlitons, de duraÃÃo mÃnima de 100fs (femtosegundos). Investigamos dois formatos de modulaÃÃo por pulsos, a modulaÃÃo por amplitude de pulso (PAM) na modalidade de chaveamento de mudanÃa de amplitude (ASK) e a modulaÃÃo por largura de pulso (PWM) para obter portas lÃgicas no NLDC-PCF duplo simÃtrico. Avaliamos o efeito resultante de um incremento no parÃmetro codificaÃÃo PAM (ε) e PWM (w), considerando a dispersÃo de segunda ordem (β2), a dispersÃo de terceira ordem (β3) e efeitos nÃo-lineares, tais como: SPM (Self Phase Modulation), SS (Self-Steepening) e IRS (lntrapulse Raman Scattering) em uma configuraÃÃo sem perdas. Os nossos resultados indicam que à possÃvel obter operaÃÃes lÃgicas utilizando um controle de fase entre os pulsos de entrada. / We present a numerical analysis for obtaining all-optical logic gates based on a nonlinear directional coupler symmetric (NLDC) based on photonic crystal fibers (PCF). The most commonly used to project the NLDC-PCF is a holey fiber, used here in cross section which is a periodic array of air holes extending through the length of the fiber, using two ultrashort light pulses in form of solitons, the minimum duration of 100fs (femtoseconds). We investigated two forms of modulation pulse, pulse amplitude modulation (PAM) in the form of amplitude shift keying (ASK) modulation and pulse width modulation (PWM) for logic gate NLDC-PCF symmetrical double. We evaluated the effect resulting from an increase in the offset parameter encoding PAM (ε) and PWM (w), considering the second order dispersion (β2), the third order dispersion (β3) and non-linear modulation effects SPM (Self Phase Modulation), SS (Self-Steepening) and IRS (lntrapulse Raman Scattering) in a configuration without loss. Our results indicate that logical operations can be obtained using a phase control between the input pulses.
12

Silicon-on-Insulator Polarization Beam Splitter Based on a Taper Asymmetrical Directional Coupler

Xiao, Min-Yuan 25 July 2012 (has links)
Polarization dependences of optical devices in highly-integrated optical systems become a major problem. To overcome this issue, one can implement polarization diversity scheme to achieve a single polarization on-chip network. One of the essential components in a polarization diversity scheme is the polarization beam splitter (PBS). In this thesis, we will a PBS based on a silicon-on-insulator (SOI) platform with reduced device size and broad operation bandwidth. We use the three-dimensional Finite-Difference Time-Domain (3D-FDTD) method to perform the simulation. First, we use two asymmetric waveguides to design an asymmetric directional coupler with only TE-like mode phase matching condition. We then tape the lower waveguide to keep the TE-polarized light, and split the TE- and TM- polarized light. By utilizing an asymmetrical directional coupler with a tapered waveguide, we have achieved a 7.3
13

Mikropáskové vazební směrové a hybridní členy - laboratorní úloha / Microstrip Directional and Hybrid Couplers - a laboratory experiment

Orság, Petr January 2008 (has links)
The diploma thesis deals with the elaboration of a laboratory experiment with basic types of microstrip directional and hybrid couplers in the frequency range up to tens GHz. The thesis is concerned on branch line directional coupler, rat-race directional coupler, De Rondeho coupler, coupled-line coupler, and Lange directional coupler. Simulated results are confronted with measured results obtained by a skalar network analyzer. From overall findings the relevant laboratory experiment was configured and designed.
14

Design, fabrication and characterization of plasmonic components based on silicon nanowire platform

Lou, Fei January 2014 (has links)
Optical interconnects based on CMOS compatible photonic integrated circuits are regarded as a promising technique to tackle the issues traditional electronics faces, such as limited bandwidth, latency, vast energy consumption and so on. In recent years, plasmonic integrated components have gained great attentions due to the properties of nano-scale confinement, which may potentially bridge the size mismatch between photonic and electronic circuits. Based on silicon nanowire platform, this thesis work studies the design, fabrication and characterization of several integrated plasmonic components, aiming to combine the benefits of Si and plasmonics. The basic theories of surface plasmon polaritons are introduced in the beginning, where we explain the physics behind the diffraction-free confinement. Numerical methods frequently used in the thesis including finite-difference time-domain method and finite-element method are then reviewed. We summarize the device fabrication techniques such as film depositions, e-beam lithography and inductively coupled plasma etching as well as characterization methods, such as direct measurement method, butt coupling, grating coupling etc. Fabrication results of an optically tunable silicon-on-insulator microdisk and III-V cavities in applications as light sources for future nanophotonics interconnects are briefly discussed. Afterwards we present in details the experimental demonstrations and novel design of plasmonic components. Hybrid plasmonic waveguides and directional couplers with various splitting ratios are firstly experimentally demonstrated. The coupling length of two 170 nm wide waveguides with a separation of 140 nm is only 1.55 µm. Secondly, an ultracompact polarization beam splitter with a footprint of 2×5.1 μm2 is proposed. The device features an extinction ratio of 12 dB and an insertion loss below 1.5 dB in the entire C-band. Thirdly, we show that plasmonics offer decreased bending losses and enhanced Purcell factor for submicron bends. Novel hybrid plasmonic disk, ring and donut resonators with radii of ~ 0.5 μm and 1 μm are experimentally demonstrated for the first time. The Q-factor of disks with 0.5 μm radii are                         , corresponding to Purcell factors of . Thermal tuning is also presented. Fourthly, we propose a design of electro-optic polymer modulator based on plasmonic microring. The figure of merit characterizing modulation efficiency is 6 times better comparing with corresponding silicon slot polymer modulator. The device exhibits an insertion loss below 1 dB and a power consumption of 5 fJ/bit at 100 GHz. At last, we propose a tightly-confined waveguide and show that the radius of disk resonators based on the proposed waveguide can be shrunk below 60 nm, which may be used to pursue a strong light-matter interaction. The presented here novel components confirm that hybrid plasmonic structures can play an important role in future inter- and intra-core computer communication systems. / <p>QC 20140404</p>
15

Optimisation d'une structure résonante pour la réalisation d'un coupleur coplanaire miniature / Optimization of a resonator for the realization of a miniaturised coplanar coupler

Melhem, Zeina 09 November 2012 (has links)
Les systèmes de télécommunications requièrent de plus en plus l’utilisation des composants passifs hyperfréquences. La commercialisation de ces composants nécessite la miniaturisation de leurs tailles, l’augmentation de leurs performances et la réduction de leurs coûts. Parmi ces composants passifs, nous citons le coupleur directionnel qui est un quadripôle destiné à répartir la puissance sur deux ports de sortie, le quatrième port reste isolé. Les travaux relatés dans ce manuscrit ont pour objectifs la conception et la réalisation d’un coupleur à accès coplanaires obtenu à partir d’un résonateur auquel nous avons appliqué des lignes de couplage. Un modèle équivalent approché a été mis en évidence par un logiciel de simulation circuit. Une étude paramétrique a été réalisée à l’aide d’un logiciel électromagnétique 3D pour fixer une règle de conception qui permet un dimensionnement convenable du composant pour un intervalle de fréquences prédéfinies. Un fonctionnement bi-bandes a été exploité pour chaque raccordement de la fréquence. Une deuxième structure de couplage a été déduite en reliant directement les lignes couplées sur le résonateur. Une étude paramétrique ainsi qu’une règle de conception ont mis en évidence un fonctionnement de coupleur mono-bande de cette structure à des fréquences prédéfinies. Une troisième structure qui fonctionne en coupleur a été exploitée en remplaçant le filtre résonateur par deux circuits en méandres. Ce nouveau coupleur à méandres présente des bandes passantes assez larges ainsi qu’un fonctionnement possible en bi-bandes. Ces coupleurs mis en œuvre peuvent assurer un couplage de l’ordre de 3 ; 6 ; 8 et 10 dB et d’un déphasage entre les deux ports de sortie de 180° pour les deux premières structures et de 90° pour le coupleur à méandres. Plusieurs séries de prototypes sont ensuite fabriquées à partir des structures optimisées en simulation. Les caractérisations hyperfréquences de ces composants montrent la performance des dispositifs réalisés / Telecommunications systems require more use of passive microwave components. The commercialization of these components requires the miniaturization of their size, increasing their performance and the reduction of their costs. Among these passive components we cited the directional coupler which is designated to spread the power between two outputs, the fourth port being isolated. The ambition of this work is to study and fabricate a coupler with coplanar access obtained from a resonator where we applied coupling lines. An equivalent approximate model was obtained using circuit simulation software. A parametric study was made using 3D electromagnetic software to fix a design rule that allows a suitable design for the component in a predefined frequency range. Dual-band operation has been exploited for each frequency. A second coupling structure was deduced by directly connecting the coupled lines to the resonator. A parametric study and a design rule have shown the operation of this structure as a single band coupler at predefined frequencies. A third structure which operates like a coupler has been exploited by replacing the resonator filter by two meandering circuits. This new meandering coupler presents a wide bandwidth and a possible operating in dual-band. These implemented couplers provided a coupling factor of 3, 6, 8 and 10 dB and a phase shift between the two output ports of 180° for the two first structures and a 90° phase shifter for the meandering coupler. Several sets of prototypes are then made. The microwave characterizations show the performance of the fabricated device
16

Estudo de acopladores de fibra Ãptica tradicional e de cristal fotÃnico e aplicaÃÃes: geraÃÃo de portas lÃgicas e sensor de corrente elÃtrica / Couplers study of traditional fiber optic and photonic crystal and applications: generation of logic gates and electric current sensor

Agliberto Melo Bastos 24 July 2015 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Apresentamos neste trabalho, uma analise numÃrica para obtenÃÃo de portas lÃgicas em acoplador nÃo-linear simÃtrico (NLDC) em fibras de cristal fotÃnico (PCF), que em sua secÃÃo transversal à formada com matriz periÃdica de buracos de ar, operando em pulso de luz ultracurtos na forma de sÃlitons, com duraÃÃo de 100fs (fentosegundos). Foram investigados formatos dos pulsos em modulaÃÃo por amplitude de pulso (PAM), com chaveamento de mudanÃa de amplitude (ASK), com objetivo de obter portas lÃgicas no NLDC-PCF triplo planar simÃtrico. Neste trabalho usamos acopladores duplos de fibra Ãptica na constituiÃÃo de um InterferÃmetro Mach-Zenhder para construir um sensor de corrente, sua funcionalidade à aplicada para investigar a qualidade da corrente alternada, quer seja na geraÃÃo, transmissÃo ou distribuiÃÃo de energia elÃtrica. Como o interferÃmetro de Mach-Zenhder usa um agente mecÃnico, usaremos o mesmo agente para construir o sensor de corrente constituÃdo de um PiezelÃtrico. Ao fazer o comparativo dos dois sensores, podemos destinar sua usabilidade em diferenciados consumidores / In this work, a numerical analysis to obtain gates in coupler symmetrical nonlinear (NLDC) in photonic crystal fibers (PCF), which in cross section is formed with periodic array of air holes, operating in light pulse ultrashort as solitons, lasting 100fs (fentosegundos). The pulses in pulse amplitude modulation formats were investigated (WFP), with amplitude shift keying (ASK), in order to obtain logic gates in the triple NLDC PCF-planar symmetrical. In this paper we use double couplers fiber optic in setting up a Mach-Zenhder Interferometer to build a current sensor, its functionality is applied to investigate the quality alternating current, whether in the generation, transmission or distribution of electricity. Since the interferometer of Mach-Zenhder uses a mechanical agent, agent will use the same for constructing the current sensor constituted of a piezoelectric. In making the comparison of the two sensors, we can allocate its usability in different consumers
17

MODELAGEM NUMÉRICA DA PROPAGAÇÃO DE PULSOS ÓPTICOS EM CADEIAS DE GUIAS ACOPLADOS / NUMERICAL MODELING OF THE PROPAGATION OF OPTIC PULSES IN CHAINS OF CONNECTED GUIDES

Corrêa, Nivea Fernanda 27 February 2009 (has links)
Made available in DSpace on 2016-08-18T18:19:25Z (GMT). No. of bitstreams: 1 Nivea Fernanda Correa.pdf: 9488427 bytes, checksum: d432cb6753ed95396a5af400756eea91 (MD5) Previous issue date: 2009-02-27 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / in chains of coupled guides. These chains can serve of model for the propagation of solitons optics in directional couplers or micro-structuralized optics fibers. Systems of linearly coupled non linear Schrödinger equations had been used as theoretical model for these chains. The used numerical methods had been the split- step Fourier method and the orthogonal collocation method. The process of transference of energy between guides was characterized by the transmittance in function of the coupling factor, length of the guide and the power of entrance. In the mapping of the transmittance the diverse regions of parameters with its different behaviors had been identified. The threshold of power and the length of coupling had been gotten. The conclusions on the chains had been made on the basis of the analysis of the results in function of the total number of guides, the number of intermediate and peripheral guides and of the arrangement of couplings. For coupling arrangement the changes in the transmittances had the same been significant when the total number of guides varies, therefore it diminished the coupling length and the power threshold increased with the number of guides. Chains with same total number of guides, but with arrangements of distinct couplings had presented transmittances with clear differences in the chains of the type opened in relation to too many. The increase of the number of couplings between the guides led to an increase of the value of the power threshold, while the values of coupling length had not presented significant variations. / ópticos em cadeias de guias acoplados. Essas cadeias podem servir de modelo para a propagação de solitons ópticos em acopladores direcionais ou fibras ópticas micro-estruturadas. Sistemas de equações não lineares de Schrödinger acopladas linearmente foram utilizados como modelo teórico para essas cadeias. Os métodos numéricos utilizados foram o método de Fourier com passo dividido e o método da colocação ortogonal. O processo de transferência de energia entre guias foi caracterizado pela transmitância em função do fator de acoplamento, comprimento do guia e da potência de entrada. No mapeamento da transmitância foram identificadas as diversas regiões de parâmetros com seus diferentes comportamentos. O limiar de potência e o comprimento de acoplamento foram obtidos. As conclusões sobre as cadeias foram feitas com base na análise dos resultados em função do número total de guias, do número de guias intermediários e periféricos e do arranjo de acoplamentos. Para o mesmo arranjo de acoplamento as mudanças nas transmitâncias foram significativas quando o número total de guias varia, pois diminuiu o comprimento de acoplamento e o limiar de potência aumentou com o número de guias. Cadeias com mesmo número total de guias, mas com arranjos de acoplamentos distintos apresentaram transmitâncias com nítidas diferenças nas cadeias do tipo aberta em relação às demais. O aumento do número de acoplamentos entre os guias levou a um aumento do valor do limiar de potência, enquanto os valores de comprimento de acoplamento não apresentaram variações significativas.
18

Novel RF MEMS Devices Enabled by Three-Dimensional Micromachining

Shah, Umer January 2014 (has links)
This thesis presents novel radio frequency microelectromechanical (RF MEMS) circuits based on the three-dimensional (3-D) micromachined coplanar transmission lines whose geometry is re-configured by integrated microelectromechanical actuators. Two types of novel RF MEMS devices are proposed. The first is a concept of MEMS capacitors tuneable in multiple discrete and well-defined steps, implemented by in-plane moving of the ground side-walls of a 3-D micromachined coplanar waveguide transmission line. The MEMS actuators are completely embedded in the ground layer of the transmission line, and fabricated using a single-mask silicon-on-insulator (SOI) RF MEMS fabrication process. The resulting device achieves low insertion loss, a very high quality factor, high reliability, high linearity and high self actuation robustness. The second type introduces two novel concepts of area efficient, ultra-wideband, MEMS-reconfigurable coupled line directional couplers, whose coupling is tuned by mechanically changing the geometry of 3-D micromachined coupled transmission lines, utilizing integrated MEMS electrostatic actuators. The coupling is achieved by tuning both the ground and the signal line coupling, obtaining a large tuneable coupling ratio while maintaining an excellent impedance match, along with high isolation and a very high directivity over a very large bandwidth. This thesis also presents for the first time on RF nonlinearity analysis of complex multi-device RF MEMS circuits. Closed-form analytical formulas for the IIP3 of MEMS multi-device circuit concepts are derived. A nonlinearity analysis, based on these formulas and on  measured device parameters, is performed for different circuit concepts and compared to the simulation results of multi-device  conlinear electromechanical circuit models. The degradation of the overall circuit nonlinearity with increasing number of device stages is investigated. Design rules are presented so that the mechanical parameters and thus the IIP3 of the individual device stages can be optimized to achieve a highest overall IIP3 for the whole circuit.The thesis further investigates un-patterned ferromagnetic NiFe/AlN multilayer composites used as advanced magnetic core materials for on-chip inductances. The approach used is to increase the thickness of the ferromagnetic material without increasing its conductivity, by using multilayer NiFe and AlN sandwich structure. This suppresses the induced currents very effectively and at the same time increases the ferromagnetic resonance, which is by a factor of 7.1 higher than for homogeneous NiFe layers of same thickness. The so far highest permeability values above 1 GHz for on-chip integrated un-patterned NiFe layers were achieved. / <p>QC 20140328</p>

Page generated in 0.0722 seconds