• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation numérique d'écoulements de fluides viscoélastiques par éléments finis incompressibles et une méthode de directions alternées; applications

Saramito, Pierre 05 March 1990 (has links) (PDF)
Nous considérons la simulation numérique des écoulements de fluides viscoélatiques. Développant une approximation en temps par la méthode des directions alternées, nous proposons un algorithme entièrement nouveau permettant de découpler le calcul des contraintes de celui des vitesses. D'ordre deux en temps, cette méthode permet de plus le calcul rapide des solutions stationnaires. L'éléments à divergence nulle de Thomas-Raviart est utilisé pour les vitesses, et celui de Lesaint-Raviart pour les contraintes. La méthode est appliquée au problème de l'écoulement de fluides du type Oldroyd dans une contraction brusque (problème de la marche).
2

Méthode de décomposition de domaine pour les équations du transport simplifié en neutronique

Lathuilière, Bruno 09 February 2010 (has links) (PDF)
Les calculs de réactivité constituent une brique fondamentale dans la simulation des coeurs des réacteurs nucléaires. Ceux-ci conduisent à la résolution de problèmes aux valeurs propres généralisées via l'algorithme de la puissance inverse. A chaque itération, on est amené à résoudre un système linéaire de manière approchée via un algorithme d'itérations imbriquées. Il est difficile de traiter les modélisations très fines avec le solveur développé à EDF, au sein de la plate-forme Cocagne, en raison de la consommation mémoire et du temps de calcul. Au cours de cette thèse, on étudie une méthode de décomposition de domaine de type Schur dual. Plusieurs placements de l'algorithme de décomposition de domaine au sein du système d'itérations imbriquées sont envisageables. Deux d'entre eux ont été implémentés et les résultats analysés. Le deuxième placement, utilisant les spécificités des éléments finis de Raviart-Thomas et de l'algorithme des directions alternées, conduit à des résultats très encourageants. Ces résultats permettent d'envisager l'industrialisation de la méthodologie associée.
3

Nonconvex Alternating Direction Optimization for Graphs : Inference and Learning / L'algorithme des directions alternées non convexe pour graphes : inférence et apprentissage

Lê-Huu, Dien Khuê 04 February 2019 (has links)
Cette thèse présente nos contributions àl’inférence et l’apprentissage des modèles graphiquesen vision artificielle. Tout d’abord, nous proposons unenouvelle classe d’algorithmes de décomposition pour résoudrele problème d’appariement de graphes et d’hypergraphes,s’appuyant sur l’algorithme des directionsalternées (ADMM) non convexe. Ces algorithmes sontefficaces en terme de calcul et sont hautement parallélisables.En outre, ils sont également très générauxet peuvent être appliqués à des fonctionnelles d’énergiearbitraires ainsi qu’à des contraintes de correspondancearbitraires. Les expériences montrent qu’ils surpassentles méthodes de pointe existantes sur des benchmarkspopulaires. Ensuite, nous proposons une relaxationcontinue non convexe pour le problème d’estimationdu maximum a posteriori (MAP) dans les champsaléatoires de Markov (MRFs). Nous démontrons quecette relaxation est serrée, c’est-à-dire qu’elle est équivalenteau problème original. Cela nous permet d’appliquerdes méthodes d’optimisation continue pour résoudrele problème initial discret sans perte de précisionaprès arrondissement. Nous étudions deux méthodes degradient populaires, et proposons en outre une solutionplus efficace utilisant l’ADMM non convexe. Les expériencessur plusieurs problèmes réels démontrent quenotre algorithme prend l’avantage sur ceux de pointe,dans différentes configurations. Finalement, nous proposonsune méthode d’apprentissage des paramètres deces modèles graphiques avec des données d’entraînement,basée sur l’ADMM non convexe. Cette méthodeconsiste à visualiser les itérations de l’ADMM commeune séquence d’opérations différenciables, ce qui permetde calculer efficacement le gradient de la perted’apprentissage par rapport aux paramètres du modèle.L’apprentissage peut alors utiliser une descente de gradientstochastique. Nous obtenons donc un frameworkunifié pour l’inférence et l’apprentissage avec l’ADMMnon-convexe. Grâce à sa flexibilité, ce framework permetégalement d’entraîner conjointement de-bout-en-boutun modèle graphique avec un autre modèle, telqu’un réseau de neurones, combinant ainsi les avantagesdes deux. Nous présentons des expériences sur un jeude données de segmentation sémantique populaire, démontrantl’efficacité de notre méthode. / This thesis presents our contributions toinference and learning of graph-based models in computervision. First, we propose a novel class of decompositionalgorithms for solving graph and hypergraphmatching based on the nonconvex alternating directionmethod of multipliers (ADMM). These algorithms arecomputationally efficient and highly parallelizable. Furthermore,they are also very general and can be appliedto arbitrary energy functions as well as arbitraryassignment constraints. Experiments show that theyoutperform existing state-of-the-art methods on popularbenchmarks. Second, we propose a nonconvex continuousrelaxation of maximum a posteriori (MAP) inferencein discrete Markov random fields (MRFs). Weshow that this relaxation is tight for arbitrary MRFs.This allows us to apply continuous optimization techniquesto solve the original discrete problem withoutloss in accuracy after rounding. We study two populargradient-based methods, and further propose a more effectivesolution using nonconvex ADMM. Experimentson different real-world problems demonstrate that theproposed ADMM compares favorably with state-of-theartalgorithms in different settings. Finally, we proposea method for learning the parameters of these graphbasedmodels from training data, based on nonconvexADMM. This method consists of viewing ADMM iterationsas a sequence of differentiable operations, whichallows efficient computation of the gradient of the trainingloss with respect to the model parameters, enablingefficient training using stochastic gradient descent. Atthe end we obtain a unified framework for inference andlearning with nonconvex ADMM. Thanks to its flexibility,this framework also allows training jointly endto-end a graph-based model with another model suchas a neural network, thus combining the strengths ofboth. We present experiments on a popular semanticsegmentation dataset, demonstrating the effectivenessof our method.
4

Reconstruction of enhanced ultrasound images from compressed measurements / Reconstruction d'images ultrasonores déconvoluées à partir de données compressées

Chen, Zhouye 21 October 2016 (has links)
L'intérêt de l'échantillonnage compressé dans l'imagerie ultrasonore a été récemment évalué largement par plusieurs équipes de recherche. Suite aux différentes configurations d'application, il a été démontré que les données RF peuvent être reconstituées à partir d'un faible nombre de mesures et / ou en utilisant un nombre réduit d'émission d'impulsions ultrasonores. Selon le modèle de l'échantillonnage compressé, la résolution des images ultrasonores reconstruites à partir des mesures compressées dépend principalement de trois aspects: la configuration d'acquisition, c.à.d. l'incohérence de la matrice d'échantillonnage, la régularisation de l'image, c.à.d. l'a priori de parcimonie et la technique d'optimisation. Nous nous sommes concentrés principalement sur les deux derniers aspects dans cette thèse. Néanmoins, la résolution spatiale d'image RF, le contraste et le rapport signal sur bruit dépendent de la bande passante limitée du transducteur d'imagerie et du phénomène physique lié à la propagation des ondes ultrasonores. Pour surmonter ces limitations, plusieurs techniques de traitement d'image en fonction de déconvolution ont été proposées pour améliorer les images ultrasonores. Dans cette thèse, nous proposons d'abord un nouveau cadre de travail pour l'imagerie ultrasonore, nommé déconvolution compressée, pour combiner l'échantillonnage compressé et la déconvolution. Exploitant une formulation unifiée du modèle d'acquisition directe, combinant des projections aléatoires et une convolution 2D avec une réponse impulsionnelle spatialement invariante, l'avantage de ce cadre de travail est la réduction du volume de données et l'amélioration de la qualité de l'image. Une méthode d'optimisation basée sur l'algorithme des directions alternées est ensuite proposée pour inverser le modèle linéaire, en incluant deux termes de régularisation exprimant la parcimonie des images RF dans une base donnée et l'hypothèse statistique gaussienne généralisée sur les fonctions de réflectivité des tissus. Nous améliorons les résultats ensuite par la méthode basée sur l'algorithme des directions simultanées. Les deux algorithmes sont évalués sur des données simulées et des données in vivo. Avec les techniques de régularisation, une nouvelle approche basée sur la minimisation alternée est finalement développée pour estimer conjointement les fonctions de réflectivité des tissus et la réponse impulsionnelle. Une investigation préliminaire est effectuée sur des données simulées. / The interest of compressive sampling in ultrasound imaging has been recently extensively evaluated by several research teams. Following the different application setups, it has been shown that the RF data may be reconstructed from a small number of measurements and/or using a reduced number of ultrasound pulse emissions. According to the model of compressive sampling, the resolution of reconstructed ultrasound images from compressed measurements mainly depends on three aspects: the acquisition setup, i.e. the incoherence of the sampling matrix, the image regularization, i.e. the sparsity prior, and the optimization technique. We mainly focused on the last two aspects in this thesis. Nevertheless, RF image spatial resolution, contrast and signal to noise ratio are affected by the limited bandwidth of the imaging transducer and the physical phenomenon related to Ultrasound wave propagation. To overcome these limitations, several deconvolution-based image processing techniques have been proposed to enhance the ultrasound images. In this thesis, we first propose a novel framework for Ultrasound imaging, named compressive deconvolution, to combine the compressive sampling and deconvolution. Exploiting an unified formulation of the direct acquisition model, combining random projections and 2D convolution with a spatially invariant point spread function, the benefit of this framework is the joint data volume reduction and image quality improvement. An optimization method based on the Alternating Direction Method of Multipliers is then proposed to invert the linear model, including two regularization terms expressing the sparsity of the RF images in a given basis and the generalized Gaussian statistical assumption on tissue reflectivity functions. It is improved afterwards by the method based on the Simultaneous Direction Method of Multipliers. Both algorithms are evaluated on simulated and in vivo data. With regularization techniques, a novel approach based on Alternating Minimization is finally developed to jointly estimate the tissue reflectivity function and the point spread function. A preliminary investigation is made on simulated data.
5

Méthode de décomposition de domaine pour les équations du transport simplifié en neutronique / Domain decomposition method for the Simplified Transport Equation in neutronic

Lathuilière, Bruno 09 February 2010 (has links)
Les calculs de réactivité constituent une brique fondamentale dans la simulation des coeurs des réacteurs nucléaires. Ceux-ci conduisent à la résolution de problèmes aux valeurs propres généralisées résolus par l'algorithme de la puissance inverse. A chaque itération, on est amené à résoudre un système linéaire de manière approchée via un algorithme d'itérations imbriquées. Il est difficile de traiter les modélisations très fines avec le solveur développé à EDF, au sein de la plate-forme Cocagne, en raison de la consommation mémoire et du temps de calcul. Au cours de cette thèse, on étudie une méthode de décomposition de domaine de type Schur dual. Plusieurs placements de l'algorithme de décomposition de domaine au sein du système d'itérations imbriquées sont envisageables. Deux d'entre eux ont été implémentés et les résultats analysés. Le deuxième placement, utilisant les spécificités des éléments finis de Raviart-Thomas et de l'algorithme des directions alternées, conduit à des résultats très encourageants. Ces résultats permettent d'envisager l'industrialisation de la méthodologie associée. / The reactivity computations are an essential component for the simulation of the core of a nuclear plant. These computations lead to generalized eigenvalue problems solved by the inverse power iteration algorithm. At each iteration, an algebraic linear system is solved through an inner/outer process. With the solver Cocagne developed at EDF, it is difficult to take into account very fine discretisation, due to the memory requirement and the computation time. In this thesis, a domain decomposition method based on the Schur dual technique is studied. Several placement in the inner/outer process are possible. Two of them are implemented and the results analyzed.The second one, which uses the specificities of the Raviart Thomas finite element and of the alternating directions algorithm, leads to very promising results. From these results the industrialization of the method can be considered.

Page generated in 0.1236 seconds