• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Word Representations and Machine Learning Models for Implicit Sense Classification in Shallow Discourse Parsing

Callin, Jimmy January 2017 (has links)
CoNLL 2015 featured a shared task on shallow discourse parsing. In 2016, the efforts continued with an increasing focus on sense classification. In the case of implicit sense classification, there was an interesting mix of traditional and modern machine learning classifiers using word representation models. In this thesis, we explore the performance of a number of these models, and investigate how they perform using a variety of word representation models. We show that there are large performance differences between word representation models for certain machine learning classifiers, while others are more robust to the choice of word representation model. We also show that with the right choice of word representation model, simple and traditional machine learning classifiers can reach competitive scores even when compared with modern neural network approaches.
2

Unsupervised extraction of semantic relations using discourse information / Extraction non supervisée de relations sémantiques par l'analyse du discours

Conrath, Juliette 14 December 2015 (has links)
La compréhension du langage naturel repose souvent sur des raisonnements de sens commun, pour lesquels la connaissance de relations sémantiques, en particulier entre prédicats verbaux, peut être nécessaire. Cette thèse porte sur la problématique de l'utilisation d'une méthode distributionnelle pour extraire automatiquement les informations sémantiques nécessaires à ces inférences de sens commun. Des associations typiques entre des paires de prédicats et un ensemble de relations sémantiques (causales, temporelles, de similarité, d'opposition, partie/tout) sont extraites de grands corpus, par l'exploitation de la présence de connecteurs du discours signalant typiquement ces relations. Afin d'apprécier ces associations, nous proposons plusieurs mesures de signifiance inspirées de la littérature ainsi qu'une mesure novatrice conçue spécifiquement pour évaluer la force du lien entre les deux prédicats et la relation. La pertinence de ces mesures est évaluée par le calcul de leur corrélation avec des jugements humains, obtenus par l'annotation d'un échantillon de paires de verbes en contexte discursif. L'application de cette méthodologie sur des corpus de langue française et anglaise permet la construction d'une ressource disponible librement, Lecsie (Linked Events Collection for Semantic Information Extraction). Celle-ci est constituée de triplets: des paires de prédicats associés à une relation; à chaque triplet correspondent des scores de signifiance obtenus par nos mesures.Cette ressource permet de dériver des représentations vectorielles de paires de prédicats qui peuvent être utilisées comme traits lexico-sémantiques pour la construction de modèles pour des applications externes. Nous évaluons le potentiel de ces représentations pour plusieurs applications. Concernant l'analyse du discours, les tâches de la prédiction d'attachement entre unités du discours, ainsi que la prédiction des relations discursives spécifiques les reliant, sont explorées. En utilisant uniquement les traits provenant de notre ressource, nous obtenons des améliorations significatives pour les deux tâches, par rapport à plusieurs bases de référence, notamment des modèles utilisant d'autres types de représentations lexico-sémantiques. Nous proposons également de définir des ensembles optimaux de connecteurs mieux adaptés à des applications sur de grands corpus, en opérant une réduction de dimension dans l'espace des connecteurs, au lieu d'utiliser des groupes de connecteurs composés manuellement et correspondant à des relations prédéfinies. Une autre application prometteuse explorée dans cette thèse concerne les relations entre cadres sémantiques (semantic frames, e.g. FrameNet): la ressource peut être utilisée pour enrichir cette structure par des relations potentielles entre frames verbaux à partir des associations entre leurs verbes. Ces applications diverses démontrent les contributions prometteuses amenées par notre approche permettant l'extraction non supervisée de relations sémantiques. / Natural language understanding often relies on common-sense reasoning, for which knowledge about semantic relations, especially between verbal predicates, may be required. This thesis addresses the challenge of using a distibutional method to automatically extract the necessary semantic information for common-sense inference. Typical associations between pairs of predicates and a targeted set of semantic relations (causal, temporal, similarity, opposition, part/whole) are extracted from large corpora, by exploiting the presence of discourse connectives which typically signal these semantic relations. In order to appraise these associations, we provide several significance measures inspired from the literature as well as a novel measure specifically designed to evaluate the strength of the link between the two predicates and the relation. The relevance of these measures is evaluated by computing their correlations with human judgments, based on a sample of verb pairs annotated in context. The application of this methodology to French and English corpora leads to the construction of a freely available resource, Lecsie (Linked Events Collection for Semantic Information Extraction), which consists of triples: pairs of event predicates associated with a relation; each triple is assigned significance scores based on our measures. From this resource, vector-based representations of pairs of predicates can be induced and used as lexical semantic features to build models for external applications. We assess the potential of these representations for several applications. Regarding discourse analysis, the tasks of predicting attachment of discourse units, as well as predicting the specific discourse relation linking them, are investigated. Using only features from our resource, we obtain significant improvements for both tasks in comparison to several baselines, including ones using other representations of the pairs of predicates. We also propose to define optimal sets of connectives better suited for large corpus applications by performing a dimension reduction in the space of the connectives, instead of using manually composed groups of connectives corresponding to predefined relations. Another promising application pursued in this thesis concerns relations between semantic frames (e.g. FrameNet): the resource can be used to enrich this sparse structure by providing candidate relations between verbal frames, based on associations between their verbs. These diverse applications aim to demonstrate the promising contributions provided by our approach, namely allowing the unsupervised extraction of typed semantic relations.

Page generated in 0.0784 seconds