• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

COMPUTER-AIDED TRAUMA DECISION MAKING USING MACHINE LEARNING AND SIGNAL PROCESSING

Ji, Soo-Yeon 19 November 2008 (has links)
Over the last 20 years, much work has focused on computer-aided clinical decision support systems due to a rapid increase in the need for management and processing of medical knowledge. Among all fields of medicine, trauma care has the highest need for proper information management due to the high prevalence of complex, life-threatening injuries. In particular, hemorrhage, which is encountered in most traumatic injuries, is a dominant factor in determining survival in both civilian and military settings. This complication can be better managed using a more in-depth analysis of patient information. Trauma physicians must make precise and rapid decisions, while considering a large number of patient variables and dealing with stressful environments. The ability of a computer-aided decision making system to rapidly analyze a patient’s condition can enable physicians to make more accurate decisions and thereby significantly improve the quality of care provided to patients. The first part of this study is focused on classification of highly complex databases using a hierarchical method which combines two complementary techniques: logistic regression and machine learning. This method, hereafter referred to as Classification Using Significant Features (CUSF), includes a statistical process to select the most significant variables from the correlated database. Then a machine learning algorithm is used to identify the data into classes using only the significant variables. As the main application addressed by CUSF, a set of computer-assisted rule-based trauma decision making system are designed. Computer aided decision-making system not only provides vital assistance for physicians in making fast and accurate decisions, proposed decisions are supported by transparent reasoning, but also can confirm a physicians’ current knowledge, enabling them to detect complex patterns and information which may reveal new knowledge not easily visible to the human eyes. The second part of this study proposes an algorithm based on a set of novel wavelet features to analyze physiological signals, such as Electrocardiograms (ECGs) that can provide invaluable information typically invisible to human eyes. These wavelet-based method, hereafter referred to as Signal Analysis Based on Wavelet-Extracted Features (SABWEF), extracts information that can be used to detect and analyze complex patterns that other methods such as Fourier cannot deal with. For instance, SABWEF can evaluate the severity of hemorrhagic shock (HS) from ECG, while the traditional technique of applying power spectrum density (PSD) and fractal dimension (FD) cannot distinguish between the ECG patterns of patients with HS (i.e. blood loss), and those of subjects undergoing physical activity. In this study, as the main application of SABWEF, ECG is analyzed to distinguish between HS and physical activity, and show that SABWEF can be used in both civilian and military settings to detect HS and its extent. This is the first reported use of an ECG analysis method to classify blood volume loss. SABWEF has the capability to rapidly determine the degree of volume loss from hemorrhage, providing the chance for more rapid remote triage and decision making.
2

Multiresolutional partial least squares and principal component analysis of fluidized bed drying

Frey, Gerald M. 14 April 2005
Fluidized bed dryers are used in the pharmaceutical industry for the batch drying of pharmaceutical granulate. Maintaining optimal hydrodynamic conditions throughout the drying process is essential to product quality. Due to the complex interactions inherent in the fluidized bed drying process, mechanistic models capable of identifying these optimal modes of operation are either unavailable or limited in their capabilities. Therefore, empirical models based on experimentally generated data are relied upon to study these systems.<p> Principal Component Analysis (PCA) and Partial Least Squares (PLS) are multivariate statistical techniques that project data onto linear subspaces that are the most descriptive of variance in a dataset. By modeling data in terms of these subspaces, a more parsimonious representation of the system is possible. In this study, PCA and PLS are applied to data collected from a fluidized bed dryer containing pharmaceutical granulate. <p>System hydrodynamics were quantified in the models using high frequency pressure fluctuation measurements. These pressure fluctuations have previously been identified as a characteristic variable of hydrodynamics in fluidized bed systems. As such, contributions from the macroscale, mesoscale, and microscales of motion are encoded into the signals. A multiresolutional decomposition using a discrete wavelet transformation was used to resolve these signals into components more representative of these individual scales before modeling the data. <p>The combination of multiresolutional analysis with PCA and PLS was shown to be an effective approach for modeling the conditions in the fluidized bed dryer. In this study, datasets from both steady state and transient operation of the dryer were analyzed. The steady state dataset contained measurements made on a bed of dry granulate and the transient dataset consisted of measurements taken during the batch drying of granulate from approximately 33 wt.% moisture to 5 wt.%. Correlations involving several scales of motion were identified in both studies.<p> In the steady state study, deterministic behavior related to superficial velocity, pressure sensor position, and granulate particle size distribution was observed in PCA model parameters. It was determined that these properties could be characterized solely with the use of the high frequency pressure fluctuation data. Macroscopic hydrodynamic characteristics such as bubbling frequency and fluidization regime were identified in the low frequency components of the pressure signals and the particle scale interactions of the microscale were shown to be correlated to the highest frequency signal components. PLS models were able to characterize the effects of superficial velocity, pressure sensor position, and granulate particle size distribution in terms of the pressure signal components. Additionally, it was determined that statistical process control charts capable of monitoring the fluid bed hydrodynamics could be constructed using PCA<p>In the transient drying experiments, deterministic behaviors related to inlet air temperature, pressure sensor position, and initial bed mass were observed in PCA and PLS model parameters. The lowest frequency component of the pressure signal was found to be correlated to the overall temperature effects during the drying cycle. As in the steady state study, bubbling behavior was also observed in the low frequency components of the pressure signal. PLS was used to construct an inferential model of granulate moisture content. The model was found to be capable of predicting the moisture throughout the drying cycle. Preliminary statistical process control models were constructed to monitor the fluid bed hydrodynamics throughout the drying process. These models show promise but will require further investigation to better determine sensitivity to process upsets.<p> In addition to PCA and PLS analyses, Multiway Principal Component Analysis (MPCA) was used to model the drying process. Several key states related to the mass transfer of moisture and changes in temperature throughout the drying cycle were identified in the MPCA model parameters. It was determined that the mass transfer of moisture throughout the drying process affects all scales of motion and overshadows other hydrodynamic behaviors found in the pressure signals.
3

Multiresolutional partial least squares and principal component analysis of fluidized bed drying

Frey, Gerald M. 14 April 2005 (has links)
Fluidized bed dryers are used in the pharmaceutical industry for the batch drying of pharmaceutical granulate. Maintaining optimal hydrodynamic conditions throughout the drying process is essential to product quality. Due to the complex interactions inherent in the fluidized bed drying process, mechanistic models capable of identifying these optimal modes of operation are either unavailable or limited in their capabilities. Therefore, empirical models based on experimentally generated data are relied upon to study these systems.<p> Principal Component Analysis (PCA) and Partial Least Squares (PLS) are multivariate statistical techniques that project data onto linear subspaces that are the most descriptive of variance in a dataset. By modeling data in terms of these subspaces, a more parsimonious representation of the system is possible. In this study, PCA and PLS are applied to data collected from a fluidized bed dryer containing pharmaceutical granulate. <p>System hydrodynamics were quantified in the models using high frequency pressure fluctuation measurements. These pressure fluctuations have previously been identified as a characteristic variable of hydrodynamics in fluidized bed systems. As such, contributions from the macroscale, mesoscale, and microscales of motion are encoded into the signals. A multiresolutional decomposition using a discrete wavelet transformation was used to resolve these signals into components more representative of these individual scales before modeling the data. <p>The combination of multiresolutional analysis with PCA and PLS was shown to be an effective approach for modeling the conditions in the fluidized bed dryer. In this study, datasets from both steady state and transient operation of the dryer were analyzed. The steady state dataset contained measurements made on a bed of dry granulate and the transient dataset consisted of measurements taken during the batch drying of granulate from approximately 33 wt.% moisture to 5 wt.%. Correlations involving several scales of motion were identified in both studies.<p> In the steady state study, deterministic behavior related to superficial velocity, pressure sensor position, and granulate particle size distribution was observed in PCA model parameters. It was determined that these properties could be characterized solely with the use of the high frequency pressure fluctuation data. Macroscopic hydrodynamic characteristics such as bubbling frequency and fluidization regime were identified in the low frequency components of the pressure signals and the particle scale interactions of the microscale were shown to be correlated to the highest frequency signal components. PLS models were able to characterize the effects of superficial velocity, pressure sensor position, and granulate particle size distribution in terms of the pressure signal components. Additionally, it was determined that statistical process control charts capable of monitoring the fluid bed hydrodynamics could be constructed using PCA<p>In the transient drying experiments, deterministic behaviors related to inlet air temperature, pressure sensor position, and initial bed mass were observed in PCA and PLS model parameters. The lowest frequency component of the pressure signal was found to be correlated to the overall temperature effects during the drying cycle. As in the steady state study, bubbling behavior was also observed in the low frequency components of the pressure signal. PLS was used to construct an inferential model of granulate moisture content. The model was found to be capable of predicting the moisture throughout the drying cycle. Preliminary statistical process control models were constructed to monitor the fluid bed hydrodynamics throughout the drying process. These models show promise but will require further investigation to better determine sensitivity to process upsets.<p> In addition to PCA and PLS analyses, Multiway Principal Component Analysis (MPCA) was used to model the drying process. Several key states related to the mass transfer of moisture and changes in temperature throughout the drying cycle were identified in the MPCA model parameters. It was determined that the mass transfer of moisture throughout the drying process affects all scales of motion and overshadows other hydrodynamic behaviors found in the pressure signals.
4

Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen / Predictability of economic time series on different time scales.

Mettke, Philipp 05 April 2016 (has links) (PDF)
This thesis examines three decomposition techniques and their usability for economic and financial time series. The stock index DAX30 and the exchange rate from British pound to US dollar are used as representative economic time series. Additionally, autoregressive and conditional heteroscedastic simulations are analysed as benchmark processes to the real data. Discrete wavelet transform (DWT) uses wavelike functions to adapt the behaviour of time series on different time scales. The second method is the singular spectral analysis (SSA), which is applied to extract influential reconstructed modes. As a third algorithm, empirical mode decomposition (END) leads to intrinsic mode functions, who reflect the short and long term fluctuations of the time series. Some problems arise in the decomposition process, such as bleeding at the DWT method or mode mixing of multiple EMD mode functions. Conclusions to evaluate the predictability of the time series are drawn based on entropy - and recurrence - analysis. The cyclic behaviour of the decompositions is examined via the coefficient of variation, based on the instantaneous frequency. The results show rising predictability, especially on higher decomposition levels. The instantaneous frequency measure leads to low values for regular oscillatory cycles, irregular behaviour results in a high variation coefficient. The singular spectral analysis show frequency - stable cycles in the reconstructed modes, but represents the influences of the original time series worse than the other two methods, which show on the contrary very little frequency - stability in the extracted details.
5

Vorhersagbarkeit ökonomischer Zeitreihen auf verschiedenen zeitlichen Skalen

Mettke, Philipp 24 November 2015 (has links)
This thesis examines three decomposition techniques and their usability for economic and financial time series. The stock index DAX30 and the exchange rate from British pound to US dollar are used as representative economic time series. Additionally, autoregressive and conditional heteroscedastic simulations are analysed as benchmark processes to the real data. Discrete wavelet transform (DWT) uses wavelike functions to adapt the behaviour of time series on different time scales. The second method is the singular spectral analysis (SSA), which is applied to extract influential reconstructed modes. As a third algorithm, empirical mode decomposition (END) leads to intrinsic mode functions, who reflect the short and long term fluctuations of the time series. Some problems arise in the decomposition process, such as bleeding at the DWT method or mode mixing of multiple EMD mode functions. Conclusions to evaluate the predictability of the time series are drawn based on entropy - and recurrence - analysis. The cyclic behaviour of the decompositions is examined via the coefficient of variation, based on the instantaneous frequency. The results show rising predictability, especially on higher decomposition levels. The instantaneous frequency measure leads to low values for regular oscillatory cycles, irregular behaviour results in a high variation coefficient. The singular spectral analysis show frequency - stable cycles in the reconstructed modes, but represents the influences of the original time series worse than the other two methods, which show on the contrary very little frequency - stability in the extracted details.:1. Einleitung 2. Datengrundlage 2.1. Auswahl und Besonderheiten ökonomischer Zeitreihen 2.2. Simulationsstudie mittels AR-Prozessen 2.3. Simulationsstudie mittels GARCH-Prozessen 3. Zerlegung mittels modernen Techniken der Zeitreihenanalyse 3.1. Diskrete Wavelet Transformation 3.2. Singulärsystemanalyse 3.3. Empirische Modenzerlegung 4. Bewertung der Vorhersagbarkeit 4.1. Entropien als Maß der Kurzzeit-Vorhersagbarkeit 4.2. Rekurrenzanalyse 4.3. Frequenzstabilität der Zerlegung 5. Durchführung und Interpretation der Ergebnisse 5.1. Visuelle Interpretation der Zerlegungen 5.2. Beurteilung mittels Charakteristika 6. Fazit

Page generated in 0.1746 seconds