• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of on-line scheduling and heuristic control for production and supply chain systems using discrete event simulation

Tipi, Nicoleta-Steluta January 2000 (has links)
No description available.
2

Combining genetic algorithms and artificial neural networks to select heterogeneous dispatching rules for a job shop system

Wilson, Daniel B. January 1996 (has links)
No description available.
3

實際零工式生產派工法則之選擇:靜態系統

鄧紫文, Teng , Tzu-wen Unknown Date (has links)
現今企業在面臨市場需求快速變化、接單多樣化,及交貨期短的多重壓力下, 無不致力於改善作業流程以求獲利極大化,尤其是現場生產排程規劃一直是相當複雜而難以管理的部分。現行的軟體例如:企業資源規劃(ERP)、供應鏈管理(SCM),即是希望藉由資訊科技以解決複雜的生產排程問題。 然而,大部分企業在使用這些系統時都發現,由於缺乏有效的現場管制功能(Shop Floor Control),使得這些系統的效能受到很大的限制,而目前大多數的現場排程問題為零工式生產問題(Job Shop Problem)。 過去在零工式生產問題的理論上雖有許多傑出的研究,但研究與現場實際的問題之間有許多差異。其中最大的差異在於過去研究所使用的零工式生產問題假設所有的工作會以不同的流程經過所有的機器,然而在現場實際的零工式生產問題中卻顯示每一機器所處理的工作數目變異非常大。現場零工式生產生產排程問題包括兩個主要特性:1、每一工件可以擁有不等之操作數目;2、事先知道某些機器為瓶頸機器。本研究分別針對此兩個特性設計實驗一:產生工件擁有’等操作數’與’不等操作數’的問題;與實驗二:’無瓶頸機器’與’有瓶頸機器’的問題。在實驗中,我們以三個因素:工件數、機器數、和操作時間變異,模擬產生18種不同的狀況。然後以7種評量準則比較50個常用的派工法則在不同狀況下的表現。 研究結果發現,在實驗一與實驗二中,理論與實際現場排程問題在派工法則的表現上確實有極大的差異。本研究將這些其差異加以分析,並嘗試整理出一些規則以提供現場的使用者在面對不同狀況下選擇適當之派工法則的依據。我們相信本研究的成果不論對理論研究者、現場工程師、或生管軟體系統開發者都有極大價值。
4

A Study Focused on Rearranging the Dispatching Rules by Simulation Analysis to Improve the Performance of Batch-Typed Flowshop Manufacturing Systems

Pan, Yu-Sheng 10 August 2011 (has links)
In most of the manufacturing operations, production management staffs usually empirical rules or pilot run experiment results to decide production scheduling. However, the former methodology could go with high risk and uncertainty; the latter might partially verify some schedules and products due to the restricted manufacturing resources, and could easily cause delivery delay. This research performed a design of experimentation by computer simulation tool to develop a micro resistance manufacturing process model and compared the performance measurements among different dispatching rules so as to find the process bottleneck. Meanwhile, this research implemented the TOC (Theory of Constraints) theory to improve the manufacturing process and studied the efficiency of the improved process. This experiment took five performance measurements: product throughout, mean flowing time, mean tardiness time, mean queued job quantity and resources utilization in order to validate the results of the various dispatching rules and its performance simulating the real production process and further expects this model to become a reference scheduling model for batch-typed manufacturing processes. Additional production factors are also included into our experiments. For example, the proportion of product types produced, production timings of orders, manufacturing equipments operation time, numbers of manufacturing equipment and order delivery due date. The experiment results exhibit multi-type products of batch-typed flow shop manufacturing could use different dispatching rules based on product requirements to achieve production optimization and output maximization. TOC and adjustments of bottleneck machines can alleviate manufacturing equipment loading and reduce job queue quantity.
5

Analytical models to evaluate system performance measures for vehicle based material-handling systems under various dispatching policies

Lee, Moonsu 29 August 2005 (has links)
Queueing network-based approximation models were developed to evaluate the performance of fixed-route material-handling systems supporting a multiple workcenter manufacturing facility. In this research, we develop analytical models for fixed-route material-handling systems from two different perspectives: the workcenters?? point of view and the transporters?? point of view. The state-dependent nature of the transportation time is considered here for more accurate analytical approximation models for material-handling systems. Also, an analytical methodology is developed for analytical descriptions of the impact of several different vehicledispatching policies for material-handling systems. Two different types of vehicledispatching policies are considered. Those are workcenter-initiated vehicle dispatching rules and vehicle-initiated vehicle dispatching rules. For the workcenterinitiated vehicle dispatching rule, the Closest Transporter Allocation Rule (CTAR) was used to assign empty transporters to jobs needing to be moved between various workcenters. On the other hand, four different vehicle-initiated vehicle dispatching rules, Shortest Distance Dispatching Rule (SDR), Time Limit/Shortest DistanceDispatching Rule (TL/SDR), First-Come First-Serve Dispatching Rule (FCFSR), Longest Distance Dispatching Rule (LDR), are used to select job requests from workcenters when a transporter is available. From the models with a queue space limit of one at each workcenter and one transporter, two different types of extensions are considered. First, the queue space limit at each workcenter is increased from one to two while the number of transporters remains at one. Second, the number of transporters in the system is also increased from one to two while maintaining the queue space limit of one at each workcenter. Finally, using a simulation approach, we modified the Nearest Neighbor (NN) heuristic dispatching procedure for multi-load transporters proposed by Tanchoco and Co (1994) and tested for a fixed-route material-handling system. The effects of our modified NN and the original NN transporter dispatching procedures on the system performance measures, such as WIP or Cycle Time were investigated and we demonstrated that the modified NN heuristic dispatching procedure performs better than the original NN procedure in terms of these system performance measures.
6

Impact of Lot Dedication on the Performance of the Fab

Kidambi, Madhav 09 January 2003 (has links)
Photolithography is the most complex of the operations involved in the fabrication of a wafer, and it requires the greatest precision. Photolithography is used to create multiple layers of circuit patterns on a chip. Traditionally, wafer fab operations, and in particular, those performed in the photolithography processing area, have always presented challenging scheduling and control problems. Some of the characteristics that make the photolithography processing area difficult to schedule are as follows: reentrant flow, unpredictable yield and rework time at critical operations, shared resources such as reticles, rapidly changing technologies, and lot dedication for steppers and scanners for critical layers. This processing area, where wafers are exposed using scanners or steppers, typically, comprises the bottleneck workstations. Also, the numbers of reticles available for a given layer of product type are limited. Consequently, it is important to develop appropriate schedules to ensure effective utilization of the tools involved. In this study, a manufacturing line that is used to produce four dynamic random access memory (DRAM) products, requiring approximately 240 stages with 18 photolithography layers, is considered. The problem we propose to investigate can concisely be described as follows: Given a set of products to be processed in a photolithography area consisting of steppers and scanners (tools), with each product requiring a specific reticle type, determine the sequence in which to process the lots on the tools loaded with requisite reticles, so as to minimize the cycle time. The reticles required for processing a product are known apriori and can be transferred from one tool to another. Also, the lot dedication requirement has to be met. This requirement pertains to the fact that some of the layers of a lot should be processed on the same tool. (Scanner or Stepper). The processing of other layers may not require lot dedication. These are handled accordingly. Some lots may enter into the system with the requirement of processing them urgently. (called hot lots). These are handled in the formulation of the problem as such. Two solution methodologies are presented for the above stated problem. The first methodology uses a mathematical programming based approach. For the given routes and processing times of the product types, the entire problem is formulated as an Integer program. This integer program uses the start time of the jobs at various operations and the availability of reticles as variables, among others. The objective is to reduce the cycle time of the lots released into the system. The cycle time of a lot is defined as the time that a lot spends in the system. Results from the experimentation for integer program show that the computation time for solving small size problems is very high. A methodology is presented to solve this model efficiently. The second methodology consists of the development of a new dispatching rule for scheduling lots in the photolithography processing area. This along with the other dispatching rules discussed in the literature are implemented using the Autosched AP software to study the impact that lot dedication makes on the performance of a fab. The performance measures that are considered include throughput, cycle time, WIP and utilization of tool sets. The results are presented for 1-level, 2-level and 3-level lot dedication schemes. . It is shown that the 3- level lot dedication scheme performs the best under no preventive maintenance/breakdown case while, for the deterministic value of unscheduled breakdown times and preventive maintenance schedule used, 1-level lot dedication performed the best. Even though the 3-level lot dedication scheme is more flexible as compared to the 1–level lot dedication scheme, yet for the values of unscheduled breakdown times and preventive maintenance schedule used, the performance of the 3- level lot dedication scheme is worse than that of the 1- level lot dedication scheme. For another set of break down time values and preventive maintenance schedule, the outcome can be different. We also compare the performance of the proposed procedure with that of the dispatching rules available with the AutoSched AP software. The results indicate that the proposed procedure is consistent in generating better solutions under different operating conditions. / Master of Science
7

Modeling ambulance dispatching rules for EMS-systems / Modellering av dirigeringsstrategier för EMS-system

Knoops, Lorinde, Lundgren, Tilda January 2016 (has links)
This thesis presents a study on efficient dispatching rules in ambulance dispatching. By efficient dispatching rules, we mean such dispatching rules that lower response times for priority 1 calls while keeping response times for priority 2 calls at an adequate level. A Markov process and a simulation model were developed in order to evaluate the performance of several existing and newly designed dispatching rules. On four different response areas, five different dispatching rules were tested and their performances were compared. Particular focus was put upon the dispatch rule currently used by the Swedish emergency service provider SOS Alarm; the Closest rule. Our findings indicate that the four priority-based dispatching rules all outperform the Closest rule in decreasing the mean response time for calls of priority degree 1. Furthermore, implementing restrictions on the travel time for priority 2 calls was proven an efficient way to control the trade-off between the mean response time of priority 1 and 2 calls. The conclusion was drawn that the possibilities for more efficient ambulance dispatching are many and that SOS Alarm should consider implementing priority-based dispatching rules, alike the ones presented in this thesis, in their dispatching process. A study of the ambulance operator and controller profession, and the operator’s and controller’s interplay with the decision support system used by SOS Alarm in the ambulance dispatching process, was conducted in parallel. The properties of the interaction dynamics between operator and automation and the dangers linked to it were mapped out, described and analyzed. / Denna kandidatexamensuppsats behandlar effektiva dirigeringsstrategier inom ambulansdirigering. Effektiva dirigeringsstrategier åsyftar dirigeringsstrategier som lyckas sänka svarstiden för inkommande prioritet 1-samtal, samtidigt som svarstiden för prioritet 2-samtal hålls på en tillfredsställande nivå. I syfte att utvärdera olika dirigeringsstrategier utvecklades både en Markovsk modell och en simuleringsmodell. På fyra olika geografiska områden testades och jämfördes. Fem olika dirigeringsstrategier, varav två existerande och tre nyutvecklade. Särskilt fokus riktades mot Closest rule, vilket är den dirigeringsstrategi som används i SOS Alarms verksamhet idag. Från resultaten kunde utläsas att de prioritets-baserade dirigeringsstrategierna resulterade i en lägre genomsnittlig svarstid för prioritet 1-fall än Closest rule. Dessutom konstaterades det att en begränsning av svarstiderna för prioritet 2-samtal var ett effektivt sätt att kontrollera balansen mellan de genomsnittliga svarstiderna för samtal av prioritet 1, respektive 2. Slutsatsen drogs att möjligheterna för att utveckla nya effektiva dirigeringsstrategier är många och att SOS Alarm bör överväga att implementera prioritetsbaserade dirigeringsstrategier likt dem som presenterats i denna uppsats. Parallellt studerades ambulansoperatörens och -dirigentens yrkeskunnande, samt operatörens och dirigentens samspel med det beslutsstödssystem som används i SOS Alarms dirigeringsverksamhet. Interaktionen mellan operatör och automatisering samt de relaterade riskerna kartlades, beskrevs och analyserades.
8

Investigation of Existing Release Policies and Development of a Few Efficient Release Policies for Wafer Fabrication System - A Simulation Approach

Singh, Rashmi January 2016 (has links) (PDF)
Since 1970s, ever growing attention has been devoted by worldwide researchers and practitioners to the investigation of job release control. However, the need for control of flow of job/wafer into the wafer fabrication system is identified in the late 1988s. Subsequently, many release policies are developed and presented in the literature for improving its performance with respect to cycle time and throughput. Even though it is pointed out in the literature that there is a need for the development and analysis of policy that control the flow of job/wafer through the manufacturing process, still there is no exhaustive study in view of the previously developed release policies in the literature. Moreover, many new opportunities have evolved in the field of release policy in wafer fabrication industry due to the advancement in technology and computer science. It implies that near real-time decision making for efficient release policy is possible based on the global factory state. However, it appears from the literature that still to date the release policies, which are employed in real wafer fabrication system, are usually based on the static information. Release control/policy is emerging as an important research topic in the wafer fabrication industry given the extremely large capital investment and sales revenue of this industry. Release policy also hold practical significance for manufacturing managers, since neglecting it can lead to wide variations in shop workloads, can cause excessive backlogs, accomplishment of orders will be either too early or too late and there can be frequent need for expediting. All the challenges associated with the performance of the wafer fabrication system discussed here and the puzzle around the release policies and its impact on the wafer fabrication process, this research attempts to investigate existing release policies and proposing a few efficient release policies based on the knowledge gained from the existing release policies strength and weakness. Based on the insights gained from the existing release policies, three new closed loop release policies constant workload (CONSTWL), constant batch machine workload (CONSTBWL) and layer wise control (LWC) are developed by considering the parameters: workload in general, workload in batch machine, and re-entrant characteristics of the wafer fabrication system respectively. The conceptual significance in favour of these proposed closed loop release policies in improving performance of the wafer fabrication system is also outlined in this study. In the literature, few researchers clearly indicate that dispatching rule(s) influence the performance of wafer fabrication system either independently or in integration with release policies. Therefore, to empirically validate this fact, release policy is integrated with dispatching rule particularly applying on bottleneck (discrete processing machine) work station in this study. With these, the aims of proposed release policies are to efficiently improve the system performances in terms of average cycle time, standard deviation of cycle time and throughput. Accordingly, a simulation model is proposed and developed using Arena software for evaluating the performance of release policies in integration with dispatching rule applied on bottleneck work station in wafer fabrication environment. Further, to set the values of parameters in the simulation model, the cause and effect analysis is explored in this study by considering eight critical parameters or factors of the simulated wafer fabrication environment. It includes arrival rate, arrival distribution, processing time, maintenance schedule, operator’s schedule, batch size, dispatching rule and release policy. Simulation based cause and effect analysis not only helps in setting up the values of parameters in the proposed simulation model, but it also helps in strengthening the face validity of the developed simulation model. The verification and validation of the developed simulation model, which is a vital and fundamental aspect of simulation is discussed in detail in this study. Based on the analysis and the results observed from the cause and effect analysis, some modifications are incorporated and subsequently, the parameters values are set in the proposed simulation model for evaluating the performance of release policies integrating with dispatching rules. A series of simulation experiments are conducted using the proposed simulation model with systems conditions such as product mix, complexity of the process, level of machine unreliability, and system congestion level to study the relative effects of each of 18 release policies (one open loop release policy, 14 existing closed loop release policies, and 3 proposed release policies) in integration with dispatching rules (FIFO, LIFO and SRPT), considered in this study, at various throughput levels in the wafer fabrication environment. Particularly, the relative effect of integrating release policies and the dispatching rules are observed and analysed in terms of (a) the effect of dispatching rule on release policy, and (b) the effects of release policies on dispatching rules. It is observed from the overall inferences that dispatching rule: SRPT outperformed both FIFO and LIFO dispatching rule for all the considered release policies, except for the release policy: ‘TOTAL_CT’. Additionally, it is observed that for each of the eighteen release policies integrated with considered, the dispatching rule: SRPT produces less WIP inventory at the bottleneck work station for all throughput levels. The maximum deviation in delay (cycle time) is produced by dispatching rule: LIFO in all the release policies considered except for the release policy: ‘TOTAL_CT’ in which dispatching rule: SRPT produces maximum deviation in delay. Moreover, it is observed that the difference in mean delay with all three dispatching rules (FIFO, LIFO and SRPT) increases with the increase in throughput levels. Furthermore, it is observed that the throughput rate under all release policies (except ‘TOTAL_CT’) is more for dispatching rule: SRPT in comparison with both dispatching rules: FIFO and LIFO for nearly the same threshold values. The experimental results showed that proposed release policy: LWC reliably improves the system performance followed by the proposed release policy: CONSTWL and CONSTBWL with respect to both mean delay and standard deviation for corresponding throughput levels in wafer fabrication system. The characteristics of the proposed release policy: LWC are summarized and the same is presented as follows because this is proven to be best release policy among all the release policies considered in the proposed simulation model. The proposed release policy: LWC is a new measure of the work quantity on the shop floor system, which takes into account the location of jobs/wafers along the production line by employing re-entrant property of wafer fabrication system. As a result, it offers quick response to the stochastic events of the manufacturing system and can compensated the system disturbances in time. The proposed release policy: LWC offers more efficient control of flow of job/wafer in the wafer fabrication system with reduced delay (cycle time) and the standard deviation of delay (cycle time) for a given throughput level in comparison with almost all the release policies considered in this study in integration with all three dispatching rules considered and applied on bottleneck work station. For instance, from the analysis of simulation model, the proposed release policy: LWC reduces the average delay up to 98%, 95%, 90%, 89%, 49%, 35%, 21%, 17%, 13%, 12%, 10%, 9%, 9%, 9%, 6% and 4%, and reduces the standard deviation of delay up to 96%, 98%, 94%, 93%, 34%, 22%, 4%, 13%, 11%, 6%, 9%, 14%, 4%, 4%, 10% and 7% for a given throughput level, respectively in relation to other release polices: FRCP, EWIP, TOTAL_CT, PWR, EWC, DRCP, CONLOAD, WIPLCtrl, Droll, DEC, CONWIP, SA, RCONWIP, WR, CONSTBWL and CONSTWL respectively in integration with dispatching rule: SRPT. These improvements can also be understood from another aspect, that is, LWC can increase the system throughput rate for a given cycle time. The improvement is statistically significant according to the two sample t-test for all throughput values with a 95% confidence level. As the improvement of the proposed release policy: LWC is relatively less on the proposed release policies: CONSTWL and CONSTBWL with respect to mean delay, it can be inferred that the performance of CONSTWL and CONSTBWL is relatively better than other existing closed loop release policies for the scenarios considered in the simulation model. However, the best release policy: LWC provides satisfactory performance in comparison with other release policies for almost all scenarios considered in the simulation model. It is important to note that these proposed release policies can be easily applied in real wafer manufacturing systems because it possesses a simple logic and only the reference level need to be prescribed. The performance of four existing closed release policies that are FRCP, EWIP, TOTAL_CT and PWR are relatively worst in comparison with open loop release policy CONST. This is contradicting to the conclusions given in the literature by many authors that closed loop release policies are always better than open loop release policy with respect to cycle time and throughput measures. In fact, a reasonable closed loop release policy can provide better results than open loop release policy, if its objective and the release parameter are designed carefully, so that the release parameter can respond effectively to the dynamics of the manufacturing system. The reason for worst performance of these four existing closed loop release policies in comparison with open loop release policy and other existing policies is described in detail in this study. In order to see the impact of dispatching rules on a particular work station, batch machine work station, which usually has highest processing time in fabrication process, is considered in this study. The entire simulation experiments are replicated in the same manner except the basis that dispatching rules are applied on batch machine work station instead of bottleneck work station. Based on the analysis of the simulation results, the important observations are as follow: It is observed from the overall inferences that the influence of dispatching rules when applied to batch processing machine (diffusion) work station was not much on individual release policies, since the performance of all three dispatching rules provides nearly same performance at higher throughput level in the proposed simulation model. However, the performances of dispatching rule: SRPT in integration with all release policies considered in this study are summarized here because it produces less mean delay at most of the throughput values. In addition, from the analysis of simulation model, the proposed release policy: LWC reduces the average delay up to 97%, 93%, 87%, 85%, 22%, 17%, 15%, 15%, 13%, 11%, 10%, 10%, 9%, 6%, 6% and 2%, and reduces the standard deviation of delay up to 96%, 97%, 92%, 93%, 21%, 5%, 10%, 2%, 16%, 7%, 14%, 4%, 20%, 10%, 10% and 11% for a given throughput level, respectively in relation to FRCP, EWIP, PWR, TOTAL_CT, EWC, DEC, Droll, CONLOAD, SA, RCONWIP, WIPLCtrl, WR, DRCP, CONWIP, CONSTWL and CONSTBWL in integration with dispatching rule: SRPT, when applied on batch processing machine work station. The improvement is statistically significant according to the two sample t-test for most of the throughput values with a 95% confidence level. It is observed from overall inferences that the performance of all the release policies, considered in this study, in integration with dispatching rule: SRPT is better with respect to both mean delay and standard deviation of delay, when the dispatching rule is applied on the bottleneck (discrete machine, lithography) work station in the proposed simulation model. The performance of most of the release policies, considered in this study, in integration with dispatching rule: LIFO is better with respect to standard deviation of delay, when the dispatching rule is applied on the batch (batch machine, diffusion) work station. These results indicate that there is an influence of dispatching rule on the performance of wafer fabrication system if applied on batch machine work station or on bottleneck work station in integration with release policies. In addition, the effects of dispatching rules are highly dependent upon both the type of release policy used and the work station on which it is applied. Overall, the performance of the proposed release policies is proven to be very effective to system variability’s in scenarios considered in the simulation model. The significant impact of the choice of release policies on wafer manufacturing system performance is justified by the simulation experiments. It can be safely concluded that the efficient closed loop release policies that utilizes system information carefully based on the global factory state data can significantly improve the performance of wafer fabrication system. This thesis provides an extensive literature review covering several aspects of wafer fabrication process. Thereafter, a three new efficient closed loop release policies are developed and their workability are conceptually demonstrated with a framework and a flow diagram. The strength and the weakness of the existing release policies are conceptually highlighted and later it is proven to be true through comprehensive simulation study. A simulation model is developed by considering all the real-life fabrication environment for evaluating the performance of release policies in integration with dispatching rules. Cause and effect analysis is explored in proposed simulation model to set the parameters value. A series of simulation experiments are also constructed to empirically justify the conceptual significance of the proposed release policies.

Page generated in 0.1132 seconds