• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RAMAN SPECTROSCOPIC OBSERVATIONS ON THE STRUCTURAL CHARACTERISTICS AND DISSOCIATION BEHAVIOR OF METHANE HYDRATE SYNTHESIZED IN SILICA SANDS WITH VARIOUS SIZES

Liu, Changling, Ye, Yuguang, Zhang, Xunhua, Lu, Hailong, Ripmeester, John A. 07 1900 (has links)
Raman spectroscopic observations of the characteristics and dissociation of methane hydrate were carried out on hydrates synthesized in silica sands with particle sizes of 53-75 μm, 90-106 μm, 106-150 μm, and 150-180 μm. The results obtained indicate that methane hydrates formed in silica sands had similar characteristics regarding cage occupancy and hydration number (5.99) to bulk hydrate, indicative of no influence of particle size on hydrate composition. During hydrate dissociation, the change in average intensity ratio of large to small cages were generally consistent with that of bulk hydrate but dropped dramatically after a certain time, and this turning point seems to be related to the particle size of silica sands.
2

MODELING DISSOCIATION BEHAVIOUR OF METHANE HYDRATE IN POROUS SOIL MEDIA

Jayasinghe, Anuruddhika G., Grozic, Jocelyn L. H. 07 1900 (has links)
Gas hydrates are crystalline solids (clathrates) in which gas molecules are encaged within lattices of hydrogen bonded water molecules. Hydrates are stable at low temperatures and high pressures; and dissociation takes place at temperatures and pressures outside the stability zone. Modeling the dissociation behavior of hydrates in porous soil media requires attention be paid to the geomechanics of hydrate dissociation. This paper addresses the issue of coupling the hydrate dissociation problem with the soil deformation problem and constructs the mathematical framework. Thermally stimulated dissociation process under undrained conditions is considered with conduction heat transfer.

Page generated in 0.0959 seconds