• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2578
  • 1023
  • 403
  • 270
  • 95
  • 76
  • 52
  • 45
  • 45
  • 43
  • 41
  • 37
  • 29
  • 27
  • 23
  • Tagged with
  • 5705
  • 1759
  • 1281
  • 831
  • 827
  • 745
  • 745
  • 724
  • 618
  • 594
  • 552
  • 536
  • 524
  • 490
  • 478
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

An ownership-base message admission control mechanism for curbing spam

Geng, Hongxing 04 September 2007
Unsolicited e-mail has brought much annoyance to users, thus, making e-mail less reliable as a communication tool. This has happened because current email architecture has key limitations. For instance, while it allows senders to send as many messages as they want, it does not provide adequate capability to recipients to prevent unrestricted access to their mailbox. This research develops a new approach to equip recipients with ability to control access to their mailbox.<p>This thesis builds an ownership-based approach to control mailbox usage employing the CyberOrgs model. CyberOrgs is a model that provides facilities to control resources in multi-agent systems. We consider a mailbox to be a precious resource of its owner. Any access to the resource requires its owner's permission. Thus, we give recipients a capability to manage their valuable resource - mailbox. In our approach, message senders obtain a permission to send messages through negotiation. In this negotiation, a sender makes a proposal and the intended recipient evaluates the proposal according to their own policies. A sender's desired outcome of a negotiation is a contract, which conducts the subsequent communication between the sender and the recipient. Contracts help senders and recipients construct a long-term relationship.<p>Besides allowing individuals to control their mailbox, we consider groups, which represent organizations in human society, in order to allow organizations to manage their resources including mailboxes, message sending allowances, and contracts.<p>A prototype based on our approach is implemented. In the prototype, policies are separated from the mechanisms. Examples of policies are presented and a public policy interface is exposed to allow programmers to develop custom policies. Experimental results demonstrate that the system performance is policy-dependent. In other words, as long as policies are carefully designed, communication involving negotiation has minimal overhead compared to communication in which senders deliver messages to recipients directly.
302

Living within reform : a phenomenological study of the lived experiences of teacher leaders in high schools

Norris, Colleen Marie 22 September 2010
This is a phenomenological study of the experiences of three teacher leaders in the context of high school reform. It examines the essence of teacher leadership and how these teacher leaders made sense of their experiences. At the outset is a portrayal of my position and connection to the phenomenon of teacher leadership. This study reviews literature within three distinct areas. First, the nature of school reform is examined, including the rationale for reform, the challenges associated with reform, how to achieve sustainable reform, and a review of six drivers for effective reforms. Then, an investigation of distributed leadership follows which includes a discussion of the processes and forms of distributed leadership and a description of the facilitators and tensions for distributed leadership. The third area of the review is focused on teacher leadership including the roles and characteristics of teacher leaders, their connection to staff development, issues of effectiveness, and tensions for teacher leaders. Following this review, the research design and methodology is presented. Transcendental phenomenology including the concepts of phenomenological reduction and imaginative variation are explored in detail. Protocol writing was utilized to select participants for this study. From collected writings by formal teacher leaders, participants suited for phenomenological research were selected. Three teacher leaders participated in in-depth, semi-structured interviews. The interviews were transcribed by the researcher. Participants shared their experiences as teacher leaders. Additional questions were asked to elicit more details about their experiences and to find out how participants made sense of their experiences. In the experiences of the participants, five themes emerged: Grappling with teacher leadership identity, facing the uncertainties of sustaining the reform initiative, negotiating the tensions between management and leadership, experiencing challenges of leading, and feeling the empowerment of success. Participants made sense of their experiences in these four ways: learning, communicating, doing, and reflecting. Several forces that impact the experience of teacher leadership and facilitate the formation of teacher leadership identity emerged. Through the process of making sense of their experiences, teacher leaders came to understand theory, which they termed getting it, and then enacted their learning. The ways in which teacher leaders made sense of their experiences were influenced in part by their leadership persona and in part by the culture and context within which they lived. Among the implications for theory from this study is that more needs to be learned about the leadership identity of teacher leaders leading reforms. Implications for practice include the provision of time for teacher leaders to reflect on and discuss their experiences, as well as the provision of professional development focused on change praxis and leadership praxis for teacher leaders and instructional leadership for in-school administrators. Among the implications for research are the need to investigate teacher leaders association with administration, both in their aspirations and in how they are perceived towards administration, the cognitive changes that occur for teacher leaders, whether a context of instructional leadership eases tensions in teacher leadership, and whether formal teacher leader roles are an effective way for school divisions to plan for leadership succession. In addition, the phenomenological research method is reflected upon.
303

Coordination and P2P computing

Ji, Lichun 27 September 2004
Peer-to-Peer (P2P) refers to a class of systems and/or applications that use distributed resources in a decentralized and autonomous manner to achieve a goal. A number of successful applications, like BitTorrent (for file and content sharing) and SETI@Home (for distributed computing) have demonstrated the feasibility of this approach. <p> As a new form of distributed computing, P2P computing has the same coordination problems as other forms of distributed computing. Coordination has been considered an important issue in distributed computing for a long time and many coordination models and languages have been developed. <p> This research focuses on how to solve coordination problems in P2P computing. In particular, it is to provide a seamless P2P computing environment so that the migration of computation components is transparent. This research extends Manifold, an event-driven coordination model, to meet P2P computing requirements and integrates the P2P-Manifold model into an existing platform. The integration hides the complexity of the coordination model and makes the model easy to use.
304

Efficient implementation of hierarchical resource control for multi-agent systems

Zhao, Xinghui 31 October 2005
<p>Development of the World Wide Web makes it possible for multiple computers to work together in order to solve problems and make the most efficient use of resources. A distributed system is composed of such computers which are separately located and connected with each other through a network. One paradigm for computation using distributed systems is the multi-agent systems, in which many autonomous agents interact with each other to solve problems. The agents in a multi-agent system may be distributed on different computers (or nodes), where each computer owns its resources. Although the resources in a multi-agent system are connected by a network through which mobile agents can migrate for accessing sufficient resources, how to share these independently owned resources in both an effective and an efficient way is not fully understood. A key challenge in multi-agent systems is how to account for and control the resources which are located on individual nodes.</p> <p>The CyberOrgs model offers one approach to manage resources among competitive or collaborative agents by organizing computations and resources in a hierarchy. A cyberorg encapsulates agents and resources in a boundary and distributes the resources available to it within this boundary. A cyberorg contained in another cyberorg has a contract with the outer cyberorg, according to which it receives resources that it may use. A cyberorg also encapsulates an amount of the eCash, which is the currency for purchasing resources from its host cyberorg. Therefore, cyberorgs have a hierarchical structure in which resources are delivered to computations by a process where resources flow down from the root to the leaves of the hierarchy and the eCash flows up from the leaves toward the root. However, the hierarchical structure of the CyberOrgs model presents challenges in scalability. As a result, efficiency is an important concern in the implementation of CyberOrgs.</p> <p>In this thesis, an efficient implementation of the CyberOrgs model is described. System design, APIs of the implementation, example applications, experimental results, and future directions are presented.</p>
305

Detecting the Presence of a Proximate Cellular User through Distributed Femtocell Sensing

Parag, Pankaj 1988- 14 March 2013 (has links)
The current cellular industry is undergoing a huge paradigm shift from an old homogeneous one-tier network structure to a new heterogeneous two-tier structure with joint deployment of traditional macrocell base stations along with a relatively new small cell base stations, widely known as femtocells. Femtocells are low-powered, low-cost, user-deployed base stations meant to improve poor network coverage and, thereby, increase overall system capacity. As more and more femtocells are deployed, their spectrum usage and resulting interference become non-negligible. While using different operating frequency for femtocells is indeed possible, a co-channel deploy- ment of these will increase spectral efficiency, a much sought design by cellular opera- tors. In this thesis, a femtocell-based scheme is considered as a prospective means to enhance the performance of the current cellular infrastructure. In the adopted frame- work, the femtocell access point is tasked with connecting local femtocell users to the network operator without creating undue interference to cellular users. As such, the femtocell is required to cease communication when a nearby cellular user is present to prevent interference. In the envisioned paradigm, an access point possesses little information about the parent cellular base station. For instance, it may not know the individual channel gains, user locations or frequency allocations. To achieve this goal, femtocell users collectively act as sensing devices and are used to acquire data about local signal strength. This work shows that, despite having little knowledge of the operation of the macro environment, a femtocell can take advantage of the data provided by the acquisition devices and agility of the re-configurable antenna to gain insight about proximate cellular devices. The proposed inference scheme leads to a significant performance gain over oblivious femtocells. Experimental results are provided to support this study and its conclusions.
306

Actuation system design with electrically powered actuators

Meng, Fanliang 01 1900 (has links)
This project addresses the actuation system architecture of future All-electric aircraft (AEA) with electrically powered actuators (EPA). Firstly, the information of EPAs is reviewed, and then an electro-hydrostatic actuator (EHA) and electro-mechanical actuator (EMA) are selected for further system research. The actuation system architecture of Boeing and Airbus is then presented as a conventional design where the new design concepts are also researched and the distributed architecture was proposed as another design trend. To find out which one is better, both of them are selected for further research. The easily available data makes the Flying Crane a better choice for the case study. Stall load, maximum rate and power are the main elements for electric actuator requirements and power consumption, weight, cost and safety are the most important aspects for civil aircraft actuation systems. The conventional and distributed flight actuation system design considered the redundancy of systems and actuators, and also the relationship of the power, control channel and actuator work mode. But only primary flight actuation control system specifications are calculated since this data has better precision and also the limited time has to be taken into consideration. Brief comparisons of the two system specifications demonstrate that the higher power actuator have has higher efficiency and distributed actuators could reduce the system weight through reduce the system redundancy with a power efficiency decline. The electrically powered actuation system for future aircraft design is a balance between actuator number, system weight and power consumption.
307

Performance Isolation in Cloud Storage Systems

Singh, Akshay K. 09 1900 (has links)
Cloud computing enables data centres to provide resource sharing across multiple tenants. This sharing, however, usually comes at a cost in the form of reduced isolation between tenants, which can lead to inconsistent and unpredictable performance. This variability in performance becomes an impediment for clients whose services rely on consistent, responsive performance in cloud environments. The problem is exacerbated for applications that rely on cloud storage systems as performance in these systems is a ffected by disk access times, which often dominate overall request service times for these types of data services. In this thesis we introduce MicroFuge, a new distributed caching and scheduling middleware that provides performance isolation for cloud storage systems. To provide performance isolation, MicroFuge's cache eviction policy is tenant and deadline-aware, which enables the provision of isolation to tenants and ensures that data for queries with more urgent deadlines, which are most likely to be a ffected by competing requests, are less likely to be evicted than data for other queries. MicroFuge also provides simplifi ed, intelligent scheduling in addition to request admission control whose performance model of the underlying storage system will reject requests with deadlines that are unlikely to be satisfi ed. The middleware approach of MicroFuge makes it unique among other systems which provide performance isolation in cloud storage systems. Rather than providing performance isolation for some particular cloud storage system, MicroFuge can be deployed on top of any already deployed storage system without modifying it. Keeping in mind the wide spectrum of cloud storage systems available today, such an approach make MicroFuge very adoptable. In this thesis, we show that MicroFuge can provide signifi cantly better performance isolation between tenants with di fferent latency requirements than Memcached, and with admission control enabled, can ensure that more than certain percentage of requests meet their deadlines.
308

Maximal Clique Scheduling: A Simple Algorithm to Bound Maximal Independent Graph Scheduling

Sutuntivorakoon, Kanes 06 September 2012 (has links)
In this paper, we consider interference networks where the connectivity is known globally while the channel gains are known up to a particular distance from each node. In this setting, we provide a new achievability, called Maximal Clique Scheduling (MCS), which is a special case of Maximal Independent Graph Scheduling (MIG Scheduling) proposed earlier. The strategy is evaluated using the notion of normalized sum rate which is a metric to evaluate performance of networks with mismatched knowledge. The achievable normalized sum rate of the proposed MCS strategy is easier to analyze for certain classes of networks and can be used to bound the normalized sum rate of MIG Scheduling. We investigate the normalized sum rate achieved by MCS for two classes of networks. The first class is formed by interference networks where each link is connected with probability $p$. The second class is derived from Wyner 1-D model of placements of base stations and mobile nodes. We find that increasing knowledge about the network leads to increasing normalized sum-rate. However, in a random network, the increase is slower as compared to Wyner network because most nodes are far away from a node and hence learning more helps less until the whole network is known.
309

New Control Algorithms for the Distributed Generation Interface in Grid-Connected and Micro-grid Systems

Mohamed,Yasser 06 November 2008 (has links)
Driven by economic, technical, and environmental reasons, the energy sector is moving into an era where large portions of increases in electrical energy demand will be met through widespread installation of distributed resources or what's known as distributed generation (DG). DG units can operate in parallel to the main grid or in a micro-grid mode. The later is formed by a cluster of DG units connected to a distribution network to maintain the reliability of critical loads, mainly when the grid supply is not available. Distributed resources include variable frequency sources, high frequency sources, and direct energy conversion sources producing dc voltages or currents. The majority of distributed resources are interfaced to the utility grid or to the customer load via dc-ac pulse-width-modulated (PWM) voltage source inverter (VSI) systems. However, these interfaces introduce new issues, such as the absence of the physical inertia, wide-band of dynamics, limited overload capability, susceptibility to parameters variation, and switching harmonics generation. In addition, the uncertain and dynamic nature of the distribution network challenges the stability and control effectiveness of a grid-connected inverter-based DG interface. Generally, difficulties appear in the form of grid impedance and interfacing parameter variations, fast and slow grid-voltage disturbances, grid distortion and unbalance, and interactions between the inverter ac-side filter and the grid. On the other hand, a micro-grid system will be dominated by inverter-based DG units. Unlike conventional power system generators, inverter-based DG units have no physical inertia. This fact makes the micro-grid system potentially susceptible to oscillations resulting from system disturbances. Severe and random disturbances might be initiated in a micro-grid system, due to load changes, the power sharing mechanism of the inverters and other generators, and interactions between the DG interface and the network. Motivated by the aforementioned difficulties, this thesis presents new control algorithms for the DG interface that guarantee stable and high power quality injection under the occurrence of network disturbances and uncertainties, in both the grid-connected and micro-grid systems. The control architecture of the proposed DG interface relies on the following subsystems. First, a newly designed deadbeat current regulation scheme is proposed. The proposed design guarantees high power quality current injection under the presence of different disturbing parameters such as grid voltage distortion, interfacing parameter variation, and inverter system delays. Further, it utilizes the maximum dynamic performance of the inverter in a way that provides a high bandwidth and decoupled control performance for the outer control loops. Different topologies of the ac-side filter are considered for the current control design. Second, a novel adaptive discrete-time grid-voltage sensorless interfacing scheme for DG inverters is proposed. The adaptive interface relies on a new interface-monitoring unit that is developed to facilitate accurate and fast estimation of the interfacing impedance parameters and the grid voltage vector (magnitude and position) at the point of common coupling. The estimated grid voltage is utilized to realize a grid-voltage sensorless interfacing scheme, whereas the interfacing parameters are utilized for the self-tuning control and interface-parameter monitoring. Further, a simple and robust synchronization algorithm and a voltage-sensorless average power control loop are proposed to realize an adaptive voltage-sensorless DG interface. The voltage-sensorless interface positively contributes to the elimination of the residual negative sequence and voltage feed-forward compensation errors, and to the robustness of the power sharing mechanism in paralleled inverter systems, where the power-sharing mechanism is generally based on open-loop controllers. Third, a new voltage control scheme for the DG interface featuring fast load voltage regulation and effective mitigation of fast voltage disturbances is proposed. The proposed voltage control scheme targets the problem of fast and large-signal-based voltage disturbances, which is common in typical distribution feeders. A hybrid voltage controller combining a linear with a variable-structure-control element is proposed for the DG interface. Positive and dual-sequence versions of the proposed voltage controller are developed to address the issue of unbalanced voltage disturbances. The proposed voltage controller successfully embeds a wide band of frequency modes through an equivalent internal model. Subsequently, wide range of balanced and unbalanced voltage perturbations, including capacitor-switching disturbances, can be effectively mitigated. Fourth, to constrain the drift of the low frequency modes in a conventional droop-controlled micro-grid, a new transient-based droop controller with adaptive transient-gains is proposed. The proposed power-sharing controller offers an active damping feature that is designed to preserve the dynamic performance and stability of each inverter unit at different loading conditions. Unlike conventional droop controllers, the proposed droop controller yields two-degree of freedom tunable controller. Subsequently, the dynamic performance of the power-sharing mechanism can be adjusted, without affecting the static droop gain, to damp the oscillatory modes of the power-sharing controller. The overall robust DG interface facilitates a robust micro-grid operation and safe plug-and-play integration of DG units on existing distribution systems; hence increasing the system penetration of DG. The direct result of this development is huge financial saving for utilities by capturing the salient features of deploying DG into existing utility networks. Further, these developments are significant to the industry as they provide the blue print for reliable control algorithms in future DG units, which are expected to operate under challenging system conditions.
310

Improved Numerical Methods for Distributed Hydrological Models

Snowdon, Andrew January 2009 (has links)
Distributed hydrological models have been used for decades to calculate and predict the movement of water and energy within watersheds. These models have evolved from relatively simple empirical applications into complex spatially distributed and physically-based programs. However, the evolution of distributed hydrological models has not involved the improvement of the numerical methods used to calculate the redistribution of water and energy in the watershed. Because of this, many models still use numerical methods that are potentially inaccurate. In order to simulate the transport of water and energy in a hydrological model, typical numerical methods employ an operator splitting approach. Operator splitting (OS) essentially breaks down the set of coupled ordinary differential equations (ODEs) that define a hydrological model into separate ODEs that can be solved individually. The dominant operator splitting method in surface water models is the ordered series approach. Because the ordered series approach treats parallel hydrological processes as if they happen in series, it is prone to errors that can significantly reduce the accuracy of model results. The impact that operator splitting errors have upon hydrologic model results is, to date, unknown. Using a new distributed hydrological model, Raven, the impact of operator splitting errors is investigated. Understanding these errors will lead to better numerical methods for reducing errors in models and to shed light on the shortcomings of hydrological models with respect to numerical method choice. Alternative numerical methods - the explicit Euler and the implicit iterative Heun methods - are implemented and assessed in their ability to minimize errors and produce more accurate distributed hydrological models.

Page generated in 0.0703 seconds