• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2569
  • 1023
  • 403
  • 270
  • 95
  • 76
  • 52
  • 45
  • 44
  • 43
  • 41
  • 37
  • 29
  • 27
  • 23
  • Tagged with
  • 5692
  • 1756
  • 1281
  • 831
  • 827
  • 745
  • 744
  • 724
  • 618
  • 594
  • 551
  • 536
  • 523
  • 489
  • 478
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

DistroFS: En lösning för distribuerad lagring av filer / DistroFS: A Solution For Distributed File Storage

Hansen, Peter, Norell, Olov January 2007 (has links)
<p>Nuvarande implementationer av distribuerade hashtabeller (DHT) har en begränsad storlek för data som kan lagras, som t.ex. OpenDHTs datastorleks gräns på 1kByte. Är det möjligt att lagra filer större än 1kByte med DHT-tekniken? Finns det någon lösning för att skydda de data som lagrats utan att försämra prestandan? Vår lösning var att utveckla en klient- och servermjukvara. Mjukvaran använder sig av DHT tekniken för att dela upp filer och distribuera delarna över ett serverkluster. För att se om mjukvaran fungerade som tänkt, gjorde vi ett test utifrån de inledande frågorna. Testet visade att det är möjligt att lagra filer större än 1kByte, säkert med DHT tekniken utan att förlora för mycket prestanda.</p> / <p>Currently existing distributed hash table (DHT) implementations use a small storage size for data, such as OpenDHT’s storage size limitation of 1kByte. Is it possible to store larger files than 1kByte using the DHT technique? Is there a way to protect the data without losing to much performance? Our solution was to develop a client and server software. This software uses the DHT technique to split files and distribute their parts across a cluster of servers. To see if the software worked as intended we created a test based on our opening questions. This test shows that it indeed is possible to store large files securely using the DHT technique without losing any significant performance.</p>
542

Adaptive Voltage Control Methods using Distributed Energy Resources

Li, Huijuan 01 December 2010 (has links)
Distributed energy resources (DE) with power electronics interfaces and logic control using local measurements are capable of providing reactive power related to ancillary system services. In particular, local voltage regulation has drawn much attention in regards to power system reliability and voltage stability, especially from past major cascading outages. This dissertation addresses the challenges of controlling the DEs to regulate the local voltage in distribution systems. First, an adaptive voltage control method has been proposed to dynamically modify the control parameters of a single DE to respond to system changes such that the ideal response can be achieved. Theoretical analysis shows that a corresponding formulation of the dynamic control parameters exists; hence, the adaptive control method is theoretically solid. Also, the field experiment test results at the Distributed Energy Communications and Controls (DECC) Laboratory in single DE regulation case confirm the effectiveness of this method. Then, control methods have been discussed in the case of multiple DEs regulating voltages considering the availability of communications among all the DEs. When communications are readily available, a method is proposed to directly calculate the needed adaptive change of the DE control parameters in order to achieve the ideal response. When there is no communication available, an approach to adaptively and incrementally adjust the control parameters based on the local voltage changes is proposed. Since the impact from other DEs is implicitly considered in this approach, multiple DEs can collectively regulate voltages closely following the ideal response curve. Simulation results show that each method, with or without communications, can satisfy the fast response requirement for operational use without causing oscillation, inefficiency or system equipment interference, although the case with communication can perform even faster and more accurate. Since the proposed adaptive voltage regulation method in the case of multiple DEs without communication, has a high tolerance to real-time data shortage and can still provide good enough performance, it is more suitable for broad utility applications. The approach of multiple DEs with communication can be considered as a high-end solution, which gives faster and more precise results at a higher cost
543

Managing Applications and Data in Distributed Computing Infrastructures

Toor, Salman Zubair January 2012 (has links)
During the last decades the demand for large-scale computational and storage resources in science has increased dramatically. New computational infrastructures enable scientists to enter a new mode of science, e-science, which complements traditional theory and experiments. E-science is inherently interdisciplinary, involving researchers from several disciplines, and also opens up for large-scale collaborative efforts where physically distributed groups of scientists share software tools and data to make scientific progress. Within the field of e-science, new challenges are emerging in managing large-scale distributed computing efforts and distributed data sets. Different models, e.g. grids and clouds, have been introduced over the years, but new solutions built on these models are needed to enable easy and flexible use of distributed computing infrastructures by application scientists. In the first part of the thesis, application execution environments are studied. The goal is to hide technical details of the underlying distributed computing infrastructure and expose secure and user-friendly environments to the end users. First, a general-purpose solution using portal technology is described, enabling transparent and easy usage of a variety of grid systems. Then a problem-solving environment for genetic analysis is presented. Here the statistical software R is used as a workflow engine, enhanced with grid-enabled routines for performing the computationally demanding parts of the analysis. Finally, the issue of resource allocation in grid system is briefly studied and certain modifications in the distributed resource-brokering model for the ARC middleware are proposed. The second part of the thesis presents solutions for managing and analyzing scientific data using distributed storage resources. First, a new reliable and secure file-oriented distributed storage system, Chelonia, is presented. The architectural design of the system is described and implementation issues are considered. Also, the stability and scalable performance of Chelonia is verified using several test scenarios. Then, tools for providing an efficient and easy-to-use platform for data analysis built on Chelonia are presented. Here, a database driven approach is explored. An extended architecture where Chelonia is combined with the Web-Service MEDiator (WSMED) system is implemented, providing web service tools to query data without any further programming. This approach is then developed further and Chelonia is combined with SciSPARQL, a query language that extends SPARQL to queries over numeric scientific data. This results in a system that is capable of interactive analysis of distributed data sets. Writing customized modules in Java, Python or C can fulfill advanced application-specific analysis requirements. The viability of the approach is demonstrated by applying the system to data produced by URDME, a computational environment in systems biology and results for sample queries expressed in SciSPARQL are presented. Finally, the use of an open source storage cloud, Openstack – SWIFT, for analysis of data from CERN experiments is considered. Here, a pilot implementation for the ROOT data analysis framework is presented together with a performance evaluation. / eSSENCE
544

Gestion du cycle de vie de services déployés sur une infrastructure de calcul distribuée en neuroinformatique

Rojas Balderrama, Javier 11 April 2012 (has links) (PDF)
L'intérêt va croissant parmi les communautés scientifiques pour le partage de données et d'applications qui facilitent les recherches et l'établissement de collaborations fructueuses. Les domaines interdisciplinaires tels que les neurosciences nécessitent particulièrement de disposer d'une puissance de calcul suffisante pour l'expérimentation à grande échelle. Malgré les progrès réalisés dans la mise en œuvre de telles infrastructures distribuées, de nombreux défis sur l'interopérabilité et le passage à l'échelle ne sont pas complètement résolus. L'évolution permanente des technologies, la complexité intrinsèque des environnements de production et leur faible fiabilité à l'exécution sont autant de facteurs pénalisants. Ce travail porte sur la modélisation et l'implantation d'un environnement orienté services qui permet l'exécution d'applications scientifiques sur des infrastructures de calcul distribué, exploitant leur capacité de calcul haut débit. Le modèle comprend une spécification de description d'interfaces en ligne de commande; un pont entre les architectures orientées services et le calcul globalisé; ainsi que l'utilisation efficace de ressources locales et distantes pour le passage à l'échelle. Une implantation de référence est réalisée pour démontrer la faisabilité de cette approche. Sa pertinence et illustrée dans le contexte de deux projets de recherche dirigés par des campagnes expérimentales de grande ampleur réalisées sur des ressources distribuées. L'environnement développé se substitue aux systèmes existants dont les préoccupations se concentrent souvent sur la seule exécution. Il permet la gestion de codes patrimoniaux en tant que services, prenant en compte leur cycle de vie entier. De plus, l'approche orientée services aide à la conception de flux de calcul scientifique qui sont utilisés en tant que moyen flexible pour décrire des applications composées de services multiples. L'approche proposée est évaluée à la fois qualitativement et quantitativement en utilisant des applications réelles en analyse de neuroimages. Les expériences qualitatives sont basées sur l'optimisation de la spécificité et la sensibilité des outils de segmentation du cerveau utilisés pour traiter des Image par Raisonnance Magnétique de patients atteints de sclérose en plaques. Les expériences quantitative traitent de l'accélération et de la latence mesurées pendant l'exécution d'études longitudinales portant sur la mesure d'atrophie cérébrale chez des patients affectés de la maladie d'Alzheimer.
545

Dynamic Load Balancing Schemes for Large-scale HLA-based Simulations

De Grande, Robson E. 26 July 2012 (has links)
Dynamic balancing of computation and communication load is vital for the execution stability and performance of distributed, parallel simulations deployed on shared, unreliable resources of large-scale environments. High Level Architecture (HLA) based simulations can experience a decrease in performance due to imbalances that are produced initially and/or during run-time. These imbalances are generated by the dynamic load changes of distributed simulations or by unknown, non-managed background processes resulting from the non-dedication of shared resources. Due to the dynamic execution characteristics of elements that compose distributed simulation applications, the computational load and interaction dependencies of each simulation entity change during run-time. These dynamic changes lead to an irregular load and communication distribution, which increases overhead of resources and execution delays. A static partitioning of load is limited to deterministic applications and is incapable of predicting the dynamic changes caused by distributed applications or by external background processes. Due to the relevance in dynamically balancing load for distributed simulations, many balancing approaches have been proposed in order to offer a sub-optimal balancing solution, but they are limited to certain simulation aspects, specific to determined applications, or unaware of HLA-based simulation characteristics. Therefore, schemes for balancing the communication and computational load during the execution of distributed simulations are devised, adopting a hierarchical architecture. First, in order to enable the development of such balancing schemes, a migration technique is also employed to perform reliable and low-latency simulation load transfers. Then, a centralized balancing scheme is designed; this scheme employs local and cluster monitoring mechanisms in order to observe the distributed load changes and identify imbalances, and it uses load reallocation policies to determine a distribution of load and minimize imbalances. As a measure to overcome the drawbacks of this scheme, such as bottlenecks, overheads, global synchronization, and single point of failure, a distributed redistribution algorithm is designed. Extensions of the distributed balancing scheme are also developed to improve the detection of and the reaction to load imbalances. These extensions introduce communication delay detection, migration latency awareness, self-adaptation, and load oscillation prediction in the load redistribution algorithm. Such developed balancing systems successfully improved the use of shared resources and increased distributed simulations' performance.
546

Optimization in multi-relay wireless networks

Nguyen, Huu Ngoc Duy 08 June 2009
The concept of cooperation in communications has drawn a lot of research attention in recent years due to its potential to improve the efficiency of wireless networks. This new form of communications allows some users to act as relays and assist the transmission of other users' information signals. The aim of this thesis is to apply optimization techniques in the design of multi-relay wireless networks employing cooperative communications. In general, the thesis is organized into two parts: ``Distributed space-time coding' (DSTC) and ``Distributed beamforming', which cover two main approaches in cooperative communications over multi-relay networks. <br><br> In Part I of the thesis, various aspects of distributed implementation of space-time coding in a wireless relay network are treated. First, the thesis proposes a new fully-diverse distributed code which allows noncoherent reception at the destination. Second, the problem of coordinating the power allocation (PA) between source and relays to achieve the optimal performance of DSTC is studied and a novel PA scheme is developed. It is shown that the proposed PA scheme can obtain the maximum diversity order of DSTC and significantly outperform other suboptimal PA schemes. Third, the thesis presents the optimal PA scheme to minimize the mean-square error (MSE) in channel estimation during training phase of DSTC. The effect of imperfect channel estimation to the performance of DSTC is also thoroughly studied. <br><br> In Part II of the thesis, optimal distributed beamforming designs are developed for a wireless multiuser multi-relay network. Two design criteria for the optimal distributed beamforming at the relays are considered: (i) minimizing the total relay power subject to a guaranteed Quality of Service (QoS) measured in terms of signal-to-noise-ratio (SNR) at the destinations, and (ii) jointly maximizing the SNR margin at the destinations subject to power constraints at the relays. Based on convex optimization techniques, it is shown that these problems can be formulated and solved via second-order conic programming (SOCP). In addition, this part also proposes simple and fast iterative algorithms to directly solve these optimization problems.
547

Parallel Pattern Search in Large, Partial-Order Data Sets on Multi-core Systems

Ekpenyong, Olufisayo January 2011 (has links)
Monitoring and debugging distributed systems is inherently a difficult problem. Events collected during the execution of distributed systems can enable developers to diagnose and fix faults. Process-time diagrams are normally used to view the relationships between the events and understand the interaction between processes over time. A major difficulty with analyzing these sets of events is that they are usually very large. Therefore, being able to search through the event-data sets can enable users to get to points of interest quickly and find out if patterns in the dataset represent the expected behaviour of the system. A lot of research work has been done to improve the search algorithm for finding event-patterns in large partial-order datasets. In this thesis, we improve on this work by parallelizing the search algorithm. This is useful as many computers these days have more than one core or processor. Therefore, it makes sense to exploit this available computing power as part of an effort to improve the speed of the algorithm. The search problem itself can be modeled as a Constraint Satisfaction Problem (CSP). We develop a simple and efficient way of generating tasks (to be executed by the cores) that guarantees that no two cores will ever repeat the same work-effort during the search. Our approach is generic and can be applied to any CSP consisting of a large domain space. We also implement an efficient dynamic work-stealing strategy that ensures the cores are kept busy throughout the execution of the parallel algorithm. We evaluate the efficiency and scalability of our algorithm through experiments and show that we can achieve efficiencies of up to 80% on a 24-core machine.
548

Optimization in multi-relay wireless networks

Nguyen, Huu Ngoc Duy 08 June 2009 (has links)
The concept of cooperation in communications has drawn a lot of research attention in recent years due to its potential to improve the efficiency of wireless networks. This new form of communications allows some users to act as relays and assist the transmission of other users' information signals. The aim of this thesis is to apply optimization techniques in the design of multi-relay wireless networks employing cooperative communications. In general, the thesis is organized into two parts: ``Distributed space-time coding' (DSTC) and ``Distributed beamforming', which cover two main approaches in cooperative communications over multi-relay networks. <br><br> In Part I of the thesis, various aspects of distributed implementation of space-time coding in a wireless relay network are treated. First, the thesis proposes a new fully-diverse distributed code which allows noncoherent reception at the destination. Second, the problem of coordinating the power allocation (PA) between source and relays to achieve the optimal performance of DSTC is studied and a novel PA scheme is developed. It is shown that the proposed PA scheme can obtain the maximum diversity order of DSTC and significantly outperform other suboptimal PA schemes. Third, the thesis presents the optimal PA scheme to minimize the mean-square error (MSE) in channel estimation during training phase of DSTC. The effect of imperfect channel estimation to the performance of DSTC is also thoroughly studied. <br><br> In Part II of the thesis, optimal distributed beamforming designs are developed for a wireless multiuser multi-relay network. Two design criteria for the optimal distributed beamforming at the relays are considered: (i) minimizing the total relay power subject to a guaranteed Quality of Service (QoS) measured in terms of signal-to-noise-ratio (SNR) at the destinations, and (ii) jointly maximizing the SNR margin at the destinations subject to power constraints at the relays. Based on convex optimization techniques, it is shown that these problems can be formulated and solved via second-order conic programming (SOCP). In addition, this part also proposes simple and fast iterative algorithms to directly solve these optimization problems.
549

Hierarchical Matrix Techniques on Massively Parallel Computers

Izadi, Mohammad 11 December 2012 (has links) (PDF)
Hierarchical matrix (H-matrix) techniques can be used to efficiently treat dense matrices. With an H-matrix, the storage requirements and performing all fundamental operations, namely matrix-vector multiplication, matrix-matrix multiplication and matrix inversion can be done in almost linear complexity. In this work, we tried to gain even further speedup for the H-matrix arithmetic by utilizing multiple processors. Our approach towards an H-matrix distribution relies on the splitting of the index set. The main results achieved in this work based on the index-wise H-distribution are: A highly scalable algorithm for the H-matrix truncation and matrix-vector multiplication, a scalable algorithm for the H-matrix matrix multiplication, a limited scalable algorithm for the H-matrix inversion for a large number of processors.
550

Impact of Distributed Generation on Power Network Operation

Pregelj, Aleksandar 11 December 2003 (has links)
Tools and algorithms are proposed that are useful for planning, designing, and operating a distribution network with a significant penetration of distributed generation (DG). In Task 1, a PV system simulation program is developed, which incorporates the most rigorous models for the calculation of insolation, module temperature, and DC and AC power output of a PV system. The effect of random inverter failures is incorporated in the model of a PV system, and a novel performance-derating coefficient is introduced. Furthermore, a novel inverter control algorithm is presented for systems with multiple inverters. The algorithm is designed to increase overall DC/AC conversion efficiency by selectively shutting down some of the inverters during periods of low insolation, thus forcing the remaining inverters to operate at higher efficiency. In Task 2, a procedure is developed to incorporate the uncertainties imposed by stochastic, renewable DG into the conventional tools for analysis of distribution systems. A clustering algorithm is proposed to reduce large input data sets that result from the interaction of stochastic processes that drive DG output with field measurements of feeder load profiles. In addition, a procedure is proposed to determine the boundary points of the original data set, which yield feeder extreme operating conditions. Finally, a Monte Carlo analysis using a reduced data set is presented, to determine the effects of deploying a large number of renewable DG systems on a distribution feeder. In Task 3, the reliability model of an asymmetric, three--phase, non-radial distribution feeder equipped with capacity-constrained DGs is developed and used to quantify the potential reliability improvements due to the intentional islanded operation of parts of the feeder. A procedure for finding optimal positions for DG and protection devices is presented using a custom-tailored adaptive genetic algorithm.

Page generated in 0.2685 seconds