• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 13
  • 13
  • 13
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Federated Learning for Natural Language Processing using Transformers / Evaluering av Federerad Inlärning tillämpad på Transformers för klassificering av analytikerrapporter

Kjellberg, Gustav January 2022 (has links)
The use of Machine Learning (ML) in business has increased significantly over the past years. Creating high quality and robust models requires a lot of data, which is at times infeasible to obtain. As more people are becoming concerned about their data being misused, data privacy is increasingly strengthened. In 2018, the General Data Protection Regulation (GDPR), was announced within the EU. Models that use either sensitive or personal data to train need to obtain that data in accordance with the regulatory rules, such as GDPR. One other data related issue is that enterprises who wish to collaborate on model building face problems when it requires them to share their private corporate data [36, 38]. In this thesis we will investigate how one might overcome the issue of directly accessing private data when training ML models by employing Federated Learning (FL) [38]. The concept of FL is to allow several silos, i.e. separate parties, to train models with the same objective, using their local data and then with the learned model parameters create a central model. The objective of the central model is to obtain the information learned by the separate models, without ever accessing the raw data itself. This is achieved by averaging the separate models’ weights into the central model. FL thus facilitates opportunities to train a model on large amounts of data from several sources, without the need of having access to the data itself. If one can create a model with this methodology, that is not significantly worse than a model trained on the raw data, then positive effects such as strengthened data privacy, cross-enterprise collaboration and more could be attainable. In this work we have used a financial data set consisting of 25242 equity research reports, provided by Skandinaviska Enskilda Banken (SEB). Each report has a recommendation label, either Buy, Sell or Hold, making this a multi-class classification problem. To evaluate the feasibility of FL we fine-tune the pre-trained Transformer model AlbertForSequenceClassification [37] on the classification task. We create one baseline model using the entire data set and an FL model with different experimental settings, for which the data is distributed both uniformly and non-uniformly. The baseline model is used to benchmark the FL model. Our results indicate that the best FL setting only suffers a small reduction in performance. The baseline model achieves an accuracy of 83.5% compared to 82.8% for the best FL model setting. Further, we find that with an increased number of clients, the performance is worsened. We also found that our FL model was not sensitive to non-uniform data distributions. All in all, we show that FL results in slightly worse generalisation compared to the baseline model, while strongly improving on data privacy, as the central model never accesses the clients’ data. / Företags nyttjande av maskininlärning har de senaste åren ökat signifikant och för att kunna skapa högkvalitativa modeller krävs stora mängder data, vilket kan vara svårt att insamla. Parallellt med detta så ökar också den allmänna förståelsen för hur användandet av data missbrukas, vilket har lätt till ett ökat behov av starkare datasäkerhet. 2018 så trädde General Data Protection Regulation (GDPR) i kraft inom EU, vilken bland annat ställer krav på hur företag skall hantera persondata. Företag med maskininlärningsmodeller som på något sätt använder känslig eller personlig data behöver således ha fått tillgång till denna data i enlighet med de rådande lagar och regler som omfattar datahanteringen. Ytterligare ett datarelaterat problem är då företag önskar att skapa gemensamma maskininlärningsmodeller som skulle kräva att de delar deras bolagsdata [36, 38]. Denna uppsats kommer att undersöka hur Federerad Inlärning [38] kan användas för att skapa maskinlärningsmodeller som överkommer dessa datasäkerhetsrelaterade problem. Federerad Inlärning är en metod för att på ett decentraliserat vis träna maskininlärningsmodeller. Detta omfattar att låta flera aktörer träna en modell var. Varje enskild aktör tränar respektive modell på deras isolerade data och delar sedan endast modellens parametrar till en central modell. På detta vis kan varje enskild modell bidra till den gemensamma modellen utan att den gemensamma modellen någonsin haft tillgång till den faktiska datan. Givet att en modell, skapad med Federerad Inlärning kan uppnå liknande resultat som en modell tränad på rådata, så finns många positiva fördelar så som ökad datasäkerhet och ökade samarbeten mellan företag. Under arbetet har ett dataset, bestående av 25242 finansiella rapporter tillgängliggjort av Skandinaviska Ensilda Banken (SEB) använts. Varje enskild rapport innefattar en rekommendation, antingen Köp, Sälj eller Håll, vilket innebär att vi utför muliklass-klassificering. Med datan tränas den förtränade Transformermodellen AlbertForSequence- Classification [37] på att klassificera rapporterna. En Baseline-modell, vilken har tränats på all rådata och flera Federerade modellkonfigurationer skapades, där bland annat varierande fördelningen av data mellan aktörer från att vara jämnt fördelat till vara ojämnt fördelad. Resultaten visar att den bästa Federerade modellkonfigurationen endast presterar något sämre än Baseline-modellen. Baselinemodellen uppnådde en klassificeringssäkerhet på 83.5% medan den bästa Federerade modellen uppnådde 82.8%. Resultaten visar också att den Federerade modellen inte var känslig mot att variera fördelningen av datamängd mellan aktorerna, samt att med ett ökat antal aktörer så minskar klassificeringssäkerheten. Sammanfattningsvis så visar vi att Federerad Inlärning uppnår nästan lika goda resultat som Baseline-modellen, samtidigt så bidrar metoden till avsevärt bättre datasäkerhet då den centrala modellen aldrig har tillgång till rådata.
12

Parallel and Decentralized Algorithms for Big-data Optimization over Networks

Amir Daneshmand (11153640) 22 July 2021 (has links)
<p>Recent decades have witnessed the rise of data deluge generated by heterogeneous sources, e.g., social networks, streaming, marketing services etc., which has naturally created a surge of interests in theory and applications of large-scale convex and non-convex optimization. For example, real-world instances of statistical learning problems such as deep learning, recommendation systems, etc. can generate sheer volumes of spatially/temporally diverse data (up to Petabytes of data in commercial applications) with millions of decision variables to be optimized. Such problems are often referred to as Big-data problems. Solving these problems by standard optimization methods demands intractable amount of centralized storage and computational resources which is infeasible and is the foremost purpose of parallel and decentralized algorithms developed in this thesis.</p><p><br></p><p>This thesis consists of two parts: (I) Distributed Nonconvex Optimization and (II) Distributed Convex Optimization.</p><p><br></p><p>In Part (I), we start by studying a winning paradigm in big-data optimization, Block Coordinate Descent (BCD) algorithm, which cease to be effective when problem dimensions grow overwhelmingly. In particular, we considered a general family of constrained non-convex composite large-scale problems defined on multicore computing machines equipped with shared memory. We design a hybrid deterministic/random parallel algorithm to efficiently solve such problems combining synergically Successive Convex Approximation (SCA) with greedy/random dimensionality reduction techniques. We provide theoretical and empirical results showing efficacy of the proposed scheme in face of huge-scale problems. The next step is to broaden the network setting to general mesh networks modeled as directed graphs, and propose a class of gradient-tracking based algorithms with global convergence guarantees to critical points of the problem. We further explore the geometry of the landscape of the non-convex problems to establish second-order guarantees and strengthen our convergence to local optimal solutions results to global optimal solutions for a wide range of Machine Learning problems.</p><p><br></p><p>In Part (II), we focus on a family of distributed convex optimization problems defined over meshed networks. Relevant state-of-the-art algorithms often consider limited problem settings with pessimistic communication complexities with respect to the complexity of their centralized variants, which raises an important question: can one achieve the rate of centralized first-order methods over networks, and moreover, can one improve upon their communication costs by using higher-order local solvers? To answer these questions, we proposed an algorithm that utilizes surrogate objective functions in local solvers (hence going beyond first-order realms, such as proximal-gradient) coupled with a perturbed (push-sum) consensus mechanism that aims to track locally the gradient of the central objective function. The algorithm is proved to match the convergence rate of its centralized counterparts, up to multiplying network factors. When considering in particular, Empirical Risk Minimization (ERM) problems with statistically homogeneous data across the agents, our algorithm employing high-order surrogates provably achieves faster rates than what is achievable by first-order methods. Such improvements are made without exchanging any Hessian matrices over the network. </p><p><br></p><p>Finally, we focus on the ill-conditioning issue impacting the efficiency of decentralized first-order methods over networks which rendered them impractical both in terms of computation and communication cost. A natural solution is to develop distributed second-order methods, but their requisite for Hessian information incurs substantial communication overheads on the network. To work around such exorbitant communication costs, we propose a “statistically informed” preconditioned cubic regularized Newton method which provably improves upon the rates of first-order methods. The proposed scheme does not require communication of Hessian information in the network, and yet, achieves the iteration complexity of centralized second-order methods up to the statistical precision. In addition, (second-order) approximate nature of the utilized surrogate functions, improves upon the per-iteration computational cost of our earlier proposed scheme in this setting.</p>
13

DISTRIBUTED MACHINE LEARNING OVER LARGE-SCALE NETWORKS

Frank Lin (16553082) 18 July 2023 (has links)
<p>The swift emergence and wide-ranging utilization of machine learning (ML) across various industries, including healthcare, transportation, and robotics, have underscored the escalating need for efficient, scalable, and privacy-preserving solutions. Recognizing this, we present an integrated examination of three novel frameworks, each addressing different aspects of distributed learning and privacy issues: Two Timescale Hybrid Federated Learning (TT-HF), Delay-Aware Federated Learning (DFL), and Differential Privacy Hierarchical Federated Learning (DP-HFL). TT-HF introduces a semi-decentralized architecture that combines device-to-server and device-to-device (D2D) communications. Devices execute multiple stochastic gradient descent iterations on their datasets and sporadically synchronize model parameters via D2D communications. A unique adaptive control algorithm optimizes step size, D2D communication rounds, and global aggregation period to minimize network resource utilization and achieve a sublinear convergence rate. TT-HF outperforms conventional FL approaches in terms of model accuracy, energy consumption, and resilience against outages. DFL focuses on enhancing distributed ML training efficiency by accounting for communication delays between edge and cloud. It also uses multiple stochastic gradient descent iterations and periodically consolidates model parameters via edge servers. The adaptive control algorithm for DFL mitigates energy consumption and edge-to-cloud latency, resulting in faster global model convergence, reduced resource consumption, and robustness against delays. Lastly, DP-HFL is introduced to combat privacy vulnerabilities in FL. Merging the benefits of FL and Hierarchical Differential Privacy (HDP), DP-HFL significantly reduces the need for differential privacy noise while maintaining model performance, exhibiting an optimal privacy-performance trade-off. Theoretical analysis under both convex and nonconvex loss functions confirms DP-HFL’s effectiveness regarding convergence speed, privacy performance trade-off, and potential performance enhancement with appropriate network configuration. In sum, the study thoroughly explores TT-HF, DFL, and DP-HFL, and their unique solutions to distributed learning challenges such as efficiency, latency, and privacy concerns. These advanced FL frameworks have considerable potential to further enable effective, efficient, and secure distributed learning.</p>

Page generated in 0.1449 seconds