Spelling suggestions: "subject:"distribution samma""
1 |
Stochastická dominance vyšších řádů / High-order stochastic dominanceMikulka, Jakub January 2011 (has links)
The thesis deals with high-order stochastic dominance of random variables and portfolios. The summary of findings about high-order stochastic dominance and portfolio efficiency is presented. As a main part of the thesis it is proven that under assumption of both normal and gamma distribution the infinite-order stochastic dominance is equivalent to the second-order stochastic dominance. The necessary and sufficient condition for the infinite-order stochastic dominance portfolio efficiency is derived under the assumption of normality. The condition is used in the empirical part of the thesis where parametrical approach to the portfolio efficiency is compared to the nonparametric scenario approach. The derived necessary and sufficient condition is based on the assumption of normality; therefore we use two sets of data, one with fulfilled assumption of normality and the other for which the assumption of normality was unambigously rejected. Consequently, the influence of fulfillment of the normality assumption on the results of the necessary and sufficient condition for portfolio efficiency is estimated.
|
2 |
Séparation de sources non-négatives. Application au traitement des signaux de spectroscopieMoussaoui, Saïd 07 December 2005 (has links) (PDF)
Lors de l'analyse physico-chmique d'un échantillon d'une substance multi-composantes par des techniques spectroscopiques, les signaux mesurés sont des mélanges linéaires des spectres purs des différentes composantes de cette substance. L'objectif de l'analyse est d'identifier la composition de la substance via l'estimation des spectres purs et la détermination de leurs concentrations. C'est un problème de séparation de sources dans lequel les spectres purs sont les signaux sources et les coefficients de mélange permettent de déduire les proportions des différentes composantes. La contrainte principale est la non-négativité des signaux sources et des coefficients de mélange. Il s'agit donc d'un problème de séparation de sources non-négatives.<br /><br />La séparation de sources est un problème fondamental en traitement du signal dont une hypothèse forte est celle de l'indépendance statistique des signaux sources. Compte tenu du recouvrement entre les spectres purs, leur corrélation mutuelle devient parfois importante. Dans une telle situation, l'application d'une méthode fondée sur l'hypothèse d'orthogonalité s'avère infructueuse. Par ailleurs, une analyse des solutions admissibles sous la contrainte de non-négativité montre que cette contrainte toute seule ne permet d'obtenir une solution unique que dans certains cas particuliers. Ces deux constats motivent le développement de deux méthodes qui considèrent conjointement l'hypothèse d'indépendance et l'information de non-négativité. La première méthode est issue de l'approche de séparation par maximum de vraisemblance et la deuxième se fonde sur une inférence bayésienne. Une évaluation numérique des performances des méthodes développées à l'aide de données synthétiques et le traitement de signaux expérimentaux permettent, d'une part, de mettre en évidence les avantages de ces méthodes par rapport aux approches usuelles et, d'autre part, de déceler leurs limitations. Des applications au traitement de signaux réels issus de trois types de spectroscopies (Infrarouge, Raman et Ultraviolet-Visible) illustrent l'apport de la séparation de sources non-négatives à l'analyse physico-chimique.
|
3 |
Modélisation et traitement statistique d'images de microscopie confocale : application en dermatologie / Modeling and statistical treatment of confocal microscopy images : application in dermatologyHalimi, Abdelghafour 04 December 2017 (has links)
Dans cette thèse, nous développons des modèles et des méthodes statistiques pour le traitement d’images de microscopie confocale de la peau dans le but de détecter une maladie de la peau appelée lentigo. Une première contribution consiste à proposer un modèle statistique paramétrique pour représenter la texture dans le domaine des ondelettes. Plus précisément, il s’agit d’une distribution gaussienne généralisée dont on montre que le paramètre d’échelle est caractéristique des tissus sousjacents. La modélisation des données dans le domaine de l’image est un autre sujet traité dans cette thèse. A cette fin, une distribution gamma généralisée est proposée. Notre deuxième contribution consiste alors à développer un estimateur efficace des paramètres de cette loi à l’aide d’une descente de gradient naturel. Finalement, un modèle d’observation de bruit multiplicatif est établi pour expliquer la distribution gamma généralisée des données. Des méthodes d’inférence bayésienne paramétrique sont ensuite développées avec ce modèle pour permettre la classification d’images saines et présentant un lentigo. Les algorithmes développés sont appliqués à des images réelles obtenues d’une étude clinique dermatologique. / In this work, we develop statistical models and processing methods for confocal microscopy images. The first contribution consists of a parametric statistical model to represent textures in the wavelet domain. Precisely, a generalized Gaussian distribution is proposed, whose scale parameter is shown to be discriminant of the underlying tissues. The thesis deals also with modeling data in the image domain using the generalized gamma distribution. The second contribution develops an efficient parameter estimator for this distribution based on a natural gradient approach. The third contribution establishes a multiplicative noise observation model to explain the distribution of the data. Parametric Bayesian inference methods are subsequently developed based on this model to classify healthy and lentigo images. All algorithms developed in this thesis have been applied to real images from a dermatologic clinical study.
|
Page generated in 0.1148 seconds