• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectroscopie d'excitation de la photoluminescence à basse température et resonance magnétique détectée optiquement de défauts paramagnétiques de spin S=l carbure de silicium ayant une photoluminescence dans le proche infrarouge / Low Temperature Photoluminescence Excitation Spectroscopy and Optically Detected Magnetic Resonance of Near-Infrared Photoluminescent Paramagnetic Defects with Spin S = 1 in Silicon Carbide

Abbasi Zargaleh, Soroush 18 October 2017 (has links)
Les défauts ponctuels dans les matériaux à grande bande interdite font l’objet de nombreuses recherches, compte tenu des perspectives d’applications en technologie quantique. La réalisation de qubits et de capteurs quantiques a échelle nanomètres à l’aide du centre NV– a suscité la recherche de défauts ayant des propriétés magnéto-optiques similaires, mais dans un matériau technologiquement plus mûr tel que le carbure de silicium (SiC). Le SiC se présente sous différentes structures cristallographiques, notamment cubique (3C) et hexagonales (4H et 6H). Cette propriété permet d’obtenir une plus grande variété de défauts ponctuels profonds. Dans cette thèse, j'ai établi présence du défaut azote-lacune (NCVSi) de spin S=1 dans un échantillon de 4H-SiC irradié par des protons, en réalisant la spectroscopie d'excitation de la photoluminescence à la température cryogénique et en comparant les résultats à des calculs ab initio. J'ai également développé un dispositif qui m'a permis de détecter optiquement la résonance magnétique de spin S=1 (ODMR) de la bilacune (VCVSi) dans un échantillon de 3C-SiC et d'étudier son interaction hyperfine avec des spins nucléaires d’atome de carbone et de silicium voisins. / Point-like defects in wide-bandgap materials are attracting intensive research attention owing to prospective applications in quantum technologies. Inspired by the achievements obtained with the NV– center in diamond for which qubit and nanoscale quantum sensors have been demonstrated, the search for high spin color centers with similar magneto-optical properties in a more technological mature material such as silicon carbide (SiC) had a renewed interest. Indeed, SiC exhibits polymorphism, existing for instance with cubic (3C polytype) or hexagonal (4H and 6H polytypes) crystalline structures. Such property provides a degree of freedom for engineering a rich assortment of intrinsic and extrinsic atomic-like deep defects. In this thesis using photoluminescence excitation spectroscopy at cryogenic temperature and a comparison to ab initio calculations I have evidence the presence of nitrogen-vacancy spin S=1 (NCVSi) defect in proton irradiated 4H-SiC. I have also developed a setup that allowed me to detect optically the S=1 spin magnetic resonance (ODMR) of the divacancy (VCVSi) in 3C-SiC, and study its hyperfine interaction with nearby carbon and silicon nuclear spins.
2

Symmetry Analysis of Orbitals in a Plane Wave Basis : A Study on Molecules and Defects in Solids / Symmetrianalys av Orbitaler i Planvågsbas : En Studie på Molekyler och Defekter i Fasta Ämnen

Stenlund, William January 2022 (has links)
Modeling and analysing materials with theoretical tools is of great use when finding new systems for applications, for example, semiconductors with point defects can be used for quantum applications, like single photon emitters. One important aspect to consider symmetry, which can yield useful information about the properties of a system. To perform symmetry analysis, a code was developed that takes the orbitals of atomic structures, as calculated with Density Functional Theory simulations, as input. Specifically, the orbitals of molecules, and defects in solids are in focus. The symmetry analysis code calculates overlap of orbitals and their symmetry transformed counterpart, maps these overlaps to characters, finds the irreducible representations, and also finds which optical transitions are allowed. The code was tested on CH4 and SF6 molecules, and the divacancy defect in 4H-SiC. The symmetry analysis is performed easily and produces results that coincide well with other theoretical results. Furthermore, symmetry matrices can be approximated to be integer matrices, and the wave functions can be approximated with less accurate plane wave expansions by reducing the cutoff energy, and thus reducing the number of plane waves. These approximations shorten the calculation time and do not compromise the accuracy of the overlap. The code automates the symmetry analysis and is intended to be used in a high-throughput manner. / <p>2021-10-12          </p><p>The student thesis was first published online. </p><p>2022-02-25          </p><p>The student thesis was updated with an errata list which is downloadable from the permanent link.</p>
3

Spectroscopie du courant d’obscurité induit par les effets de déplacement atomique des radiations spatiales et nucléaires dans les capteurs d’images CMOS à photodiode pincée / Dark current spectroscopy of space and nuclear environment induced displacement damage defects in pinned photodiode based CMOS image sensors

Belloir, Jean-Marc 18 November 2016 (has links)
Les imageurs CMOS représentent un outil d’avenir pour de nombreuses applications scientifiques de haut vol, tellesque l’observation spatiale ou les expériences nucléaires. En effet, ces imageurs ont vu leurs performancesdémultipliées ces dernières années grâce aux avancées incessantes de la microélectronique, et présentent aussi desavantages indéniables qui les destinent à remplacer les CCDs dans les futurs instruments spatiaux. Toutefois, enenvironnement spatial ou nucléaire, ces imageurs doivent faire face aux attaques répétées de particules pouvantrapidement dégrader leurs performances électro-optiques. En particulier, les protons, électrons et ions présents dansl’espace ou les neutrons de fusion nucléaire peuvent déplacer des atomes de silicium dans le volume du pixel et enrompre la structure cristalline. Ces effets de déplacement peuvent former des défauts stables introduisant des étatsd’énergie dans la bande interdite du silicium, et ainsi conduire à la génération thermique de paires électron-trou. Parconséquent, ces radiations non-ionisantes produisent une augmentation permanente du courant d’obscurité despixels de l’imageur et donc à une diminution de leur sensibilité et de leur dynamique. L’objectif des présents travauxest d’étendre la compréhension des effets de déplacement sur l’augmentation du courant d’obscurité dans lesimageurs CMOS. En particulier, ces travaux se concentrent sur l’étude de la forme de la distribution de courantd’obscurité en fonction du type, de l’énergie et du nombre de particules ayant traversé l’imageur, mais aussi enfonction des caractéristiques de l’imageur. Ces nombreux résultats permettent de valider physiquement etexpérimentalement un modèle empirique de prédiction de la distribution du courant d’obscurité pour une utilisationdans les domaines spatial et nucléaire. Une autre partie majeure de ces travaux consiste à utiliser pour la première foisla technique de spectroscopie de courant d’obscurité pour détecter et caractériser individuellement les défautsgénérés par les radiations non-ionisantes dans les imageurs CMOS. De nombreux types de défauts sont détectés etdeux sont identifiés, prouvant l’applicabilité de cette technique pour étudier la nature des défauts cristallins généréspar les effets de déplacement dans le silicium. Ces travaux avancent la compréhension des défauts responsables del’augmentation du courant d’obscurité en environnement radiatif, et ouvrent la voie au développement de modèles deprédiction plus précis, voire de techniques permettant d’éviter la formation de ces défauts ou de les faire disparaître. / CMOS image sensors are envisioned for an increasing number of high-end scientific imaging applications such asspace imaging or nuclear experiments. Indeed, the performance of high-end CMOS image sensors has dramaticallyincreased in the past years thanks to the unceasing improvements of microelectronics, and these image sensors havesubstantial advantages over CCDs which make them great candidates to replace CCDs in future space missions.However, in space and nuclear environments, CMOS image sensors must face harsh radiation which can rapidlydegrade their electro-optical performances. In particular, the protons, electrons and ions travelling in space or thefusion neutrons from nuclear experiments can displace silicon atoms in the pixels and break the crystalline structure.These displacement damage effects lead to the formation of stable defects and to the introduction of states in theforbidden bandgap of silicon, which can allow the thermal generation of electron-hole pairs. Consequently, nonionizingradiation leads to a permanent increase of the dark current of the pixels and thus a decrease of the imagesensor sensibility and dynamic range. The aim of the present work is to extend the understanding of the effect ofdisplacement damage on the dark current increase of CMOS image sensors. In particular, this work focuses on theshape of the dark current distribution depending on the particle type, energy and fluence but also on the imagesensor physical parameters. Thanks to the many conditions tested, an empirical model for the prediction of the darkcurrent distribution induced by displacement damage in nuclear or space environments is experimentally validatedand physically justified. Another central part of this work consists in using the dark current spectroscopy techniquefor the first time on irradiated CMOS image sensors to detect and characterize radiation-induced silicon bulk defects.Many types of defects are detected and two of them are identified, proving the applicability of this technique to studythe nature of silicon bulk defects using image sensors. In summary, this work advances the understanding of thenature of the radiation-induced defects responsible for the dark current increase in space or nuclear environments. Italso leads the way to the design of more advanced dark current prediction models, or to the development ofmitigation strategies in order to prevent the formation of the responsible defects or to allow their removal.

Page generated in 0.0409 seconds