41 |
Comportement vibro-acoustique de matériaux et structures à base de poudrettes de pneumatiques recyclésRoche, Nicolas 17 December 2010 (has links) (PDF)
La difficulté de recyclage des pneus usagés en raison de la réticulation de la gomme représente un enjeu environnemental important. Une solution envisagée dans cette étude est la mise en œuvre de poudrettes de pneumatique recyclées (GTR) dans la conception de produits de plasturgie visant un bon amortissement choc, acoustique et vibratoire. Notre travail s'est orienté vers la conception et la caractérisation de deux types de matériaux : 1) Des composites Thermoplastique/GTR, sur 2 matrices thermoplastiques (TP) différentes (Acétate de vinyle (EVA) et polypropylène (PP) mis en œuvre par extrusion/injection, 2) Des plaques composées à 100% de poudrettes GTR élaborées par compaction/chauffage. La qualité de l'interface TP/GTR a été estimée par analyse micrographie électronique à balayage MEB. L'influence des charges GTR sur la cristallinité des matrices a été évaluée par DSC. Une étude en traction a permis de déterminer le module de Young en traction, le seuil d'écoulement ainsi que l'allongement à rupture. L'amortissement vibratoire a été caractérisé par analyse mécanique dynamique (DMA) avec la détermination du facteur de perte η sur une large gamme de températures permettant la construction des courbes maîtresses en fréquence (équivalence fréquence/température WLF). L'amortissement choc a été déterminé par impact de chute de masse instrumenté. Le coefficient d'absorption acoustique a été mesuré au moyen d'un tube de Kundt par la méthode des deux microphones. Ces différents moyens de caractérisation ont montré que l'amortissement de vibrations et d'impacts était augmenté par l'incorporation de charges GTR dans une matrice TP. L'étude de la résilience des mélanges PP/GTR a mis en évidence l'influence de la structure interne des éprouvettes moulées sur les mécanismes d'amortissement des chocs. Les plaques constituées à 100% de poudrettes compactées/chauffées ont démontré une bonne cohésion et d'excellentes propriétés d'amortissement aux chocs. Le coefficient d'absorption acoustique n'est intéressant qu'au voisinage de la résonance des différentes plaques testées.
|
42 |
Optimisation des transferts de données sur systèmes multiprocesseurs sur puceSaidi, Selma 24 October 2012 (has links) (PDF)
Les systèmes multiprocesseurs sur puce, tel que le processeur CELL ou plus récemment Platform 2012, sont des architectures multicœurs hétérogènes constitués d'un processeur host et d'une fabric de calcul qui consiste en plusieurs petits cœurs dont le rôle est d'agir comme un accélérateur programmable. Les parties parallélisable d'une application, qui initialement est supposé etre executé par le host, et dont le calcul est intensif sont envoyés a la fabric multicœurs pour être exécutés. Ces applications sont en général des applications qui manipulent des tableaux trés larges de données, ces données sont stockées dans une memoire distante hors puce (off-chip memory) dont l 'accès est 100 fois plus lent que l 'accès par un cœur a une mémoire locale. Accéder ces données dans la mémoire off-chip devient donc un problème majeur pour les performances. une characteristiques principale de ces plateformes est une mémoire local géré par le software, au lieu d un mechanisme de cache, tel que les mouvements de données dans la hiérarchie mémoire sont explicitement gérés par le software. Dans cette thèse, l 'objectif est d'optimiser ces transfert de données dans le but de reduire/cacher la latence de la mémoire off-chip .
|
43 |
Μελέτη των μηχανικών ιδιοτήτων νανοσωλήνων άνθρακα και άλλων γραφιτικών υλικώνΕμμανουήλ, Κωνσταντίνος 09 December 2013 (has links)
Ο κύριος σκοπός της διπλωματικής εργασίας αυτής είναι η εξοικείωση με τα γραφιτικά υλικά και τις μηχανικές τους ιδιότητες. Στο πρώτο μέρος της εργασίας, γίνεται μια εισαγωγή στους νανοσωλήνες άνθρακα και διεξάγεται μια βιβλιογραφική ανασκόπηση στο θέμα, με έμφαση στη μικροσκοπία Laser Raman ως μη-καταστρεπτική τεχνική μέτρησης μηχανικών ιδιοτήτων. Στο δεύτερο τμήμα, μελετώνται οι μηχανικές τους ιδιότητες με πειράματα εφελκυσμού σε πρωτότυπα ινίδια νανοσωλήνων, σε συσκευή δυναμικής μηχανικής ανάλυσης (DMA) και επίσης διεξάγονται μετρήσεις σε άλλα υλικά, όπως buckypapers και ίνες γραφίτη αλλά και αραμιδικές ίνες Kevlar®. Δίνεται ιδιαίτερη έμφαση στη διαδικασία παραγωγής ινιδίων νανοσωλήνων άνθρακα μονού τοιχίου με διηλεκτροφόρηση, την οποία ελπίζουμε να αναπαράγουμε στο μέλλον. / The main purpose of this thesis is to get acquainted with graphitic materials and their mechanical properties. The first part of the thesis is an introduction in carbon nanotubes and emphasis is put on Laser Raman spectroscopy as a non-destructive method to measure mechanical properties. In the second part, the mechanical properties of prototype carbon nanotube fibrils are measured in a dynamic mechanical analysis (DMA) machine and also measurements are carried out on other graphitic materials like buckypapers, graphitic fibres and aramidic polymer (Kevlar®) fibres. The production process of these carbon nanotubes fibrils via dielectrophoresis, which we hope to reproduce in the future, is specially stressed.
|
44 |
Manufacture and characterisation of carbon fibre prepreg stacks containing resin rich and resin starved slip layersToure, Saran Mariam January 2015 (has links)
The cost of manufacturing high quality composite components can be significantly reduced by using Out of Autoclave (OOA) processes if they can achieve final parts with a finish quality as high as that obtained using an autoclave process. Much research has been carried out recognising that regardless of the reinforcement fibre orientation, manufacturing of preimpregnated (prepregs) carbon components is much affected during its forming stage by fibre deformation and failure modes. This work sought to reduce wrinkling in the moulding of prepregs by introducing slip layers within the lay-up. Three types of slip layers were used: a dry fabric, a resin rich layer and a resin film. In order for the slip layers to be fully incorporated into the final laminate the resin content within the slip layer must be adjusted prior to crosslinking. In the case of dry fabric layer, additional resin must be introduced and in the case of a resin rich layer and resin film layer, excess resin has to be removed. The laminates used in the project were based on 2/2 twill and unidirectional carbon prepregs. These were manufactured by either Resin Infusion (RI) or Vacuum Bagging (VB). Resin adjustments were made at the same time. The 2/2 twill and unidirectional carbon prepregs were first characterised by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal Analysis (DMTA) before RI and VB. Dry 2/2 twill and unidirectional carbon fabrics and/or Resin Film (for VB) or fabrics and Epoxy Resin (for RI) were introduced in several plybooks and then cured. Final parts were either made of 2/2 twill carbon or unidirectional carbon. The parts were used to investigate the relationship between individual plies during the consolidation of a plybook. The first characterisations were done on flat laminates. Also two moulds were manufactured and used to produce new parts for further characterisations. The first, an aluminium mould was machined using a Computer Numerical Control (CNC). The second mould was a fan blade, made using chopped strand mats. The final parts had 3, 4 or 6 plies. These parts were characterised using Optical Microscopy (OM), Scanning Electron Microscopy (SEM), and Torsion testing. The results provide a first step towards understanding how the friction at a ply/ply level can be influenced by the "starving" or the "enriching" of resin in a plybook during its consolidation. The work showed that in OOA manufacturing, the friction at a ply/ply level can be controlled by introducing Resin Film, Dry or Resin Rich Fabrics in a prepreg plybook. It was demonstrated that introducing lubrication to control ply friction during forming can result in quality part as high as that obtained from a traditional composite forming process. As the final parts were made using a fixed die mould and a vacuum bag, most of the plies in the layups could deform individually and accommodate interply shear. Torsion testing on a number of a random selection of samples showed negligible effects on shear stresses, strengths and modulus within the parts were negligible. It is argued that the flexibility of the vacuum bag could have had an impact on the layups during forming. The plies could conform to the mould easier. This work has potential for other applications. For example in match die moulding, introducing wet lubrication could improve interply shear during forming and help in improving accuracy and geometrical conformity of final parts. Furthermore, developing techniques to control friction during forming in OOA can be attractive to industries which could not afford to invest in this OOA prepreg technology. OOA processing times have become very attractive to industries such as the sporting good, automotive, wind energy and transportation. These industries could explore the opportunity presented by the work in this EngD thesis.
|
45 |
Obtenção e caracterização de blendas poliméricas de poli (ácido láctico-co-glicólico) e poli (isopreno) para aplicação como biomaterialMarques, Douglas Ramos January 2011 (has links)
A conformação de dispositivos médicos implantáveis a partir de uma blenda exige o desenvolvimento de um produto com propriedades próximas do comportamento ideal, combinando propriedades térmicas e mecânicas e boa resposta tecidual. O Poli (ácido láctico-co-glicólico) (PLGA) e o Poli (isopreno) (IR) foram escolhidos como componentes da blenda com finalidade de promover boa biocompatibilidade e características mecânicas especificas. As blendas foram obtidas por dissolução dos polímeros em solvente orgânico, seguida de secagem. Para determinar a influência do teor de IR sobre as propriedades da blenda, foram realizados ensaios de espectroscopia na região de infravermelho por transformada de Fourier (FTIR), calorimetria diferencial de varredura (DSC), análise dinâmico-mecânica (DMA), microscopia óptica por luz polarizada (POM), análise de dureza, ensaio de tração e análise de viabilidade celular. A presença de IR na blenda provocou alteração na estrutura molecular semi-cristalina do PLGA, bem como influenciou o comportamento mecânico analisado a partir da curva tensão-deformação do material. A blenda se mostrou biocompativel em ambiente celular e em ensaios preliminares em animais, apresentando potencial para aplicação como biomaterial. / The conformation of an implantable medical device from a polymeric blend requires the development of a product with properties as close as possible of ideal behavior with the combination between thermal and mechanical properties and good tissue response. The poly (lactic-co-glycolic acid) (PLGA) and the poly (isoprene) (IR) were chosen as the blend components to promote good biocompatibility and specific mechanical characteristics. The blends were obtained by dissolution of polymers in organic solvent, followed by drying. In order to determine the IR content influence over the blend properties, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), polarized light optical microscopy (POM), hardness analysis, tensile test and cell viability test were carried out. The IR presence caused changes in semi-crystalline molecular structure of PLGA, as well as actuated over the mechanical response analyzed on material’s stress-strain curve. The blend showed itself biocompatible at cellular environment and at preliminary animal tests, presenting potential for application as biomaterial.
|
46 |
The influence of adhesive curing temperature upon the performance of FRP strengthened steel structures at ambient and elevated temperaturesOthman, Daryan Jalal January 2017 (has links)
The structural adhesives widely used in structural strengthening applications are thermoset ambient cure adhesive polymers. At ambient temperatures, these polymers are in a relatively hard and inflexible state. At higher temperatures, the material becomes soft and flexible. The region where the molecular mobility changes dramatically is known as the glass transition temperature Tg and often is presented as a single value. Epoxy polymers exhibit a significant reduction in mechanical properties near glass transition temperature Tg when they are exposed to elevated temperatures. Glass transition temperature Tg is used to characterise the change in epoxy adhesive properties with changing temperature. The mechanical properties of epoxies tend to improve with curing temperature. This is because the crosslink density between the adhesive molecular structures increases during the curing process consequently the Tg improves. The aims of this work are first to demonstrate the importance of curing temperature. Second, to investigate the influence of glass transition temperature !! improvement on the performance of EB-FRP strengthened steel structures in flexure at ambient and elevated temperatures. Third, to compare analytical results with experimental results from the flexure tests results. Finally, to compare the current design guideline recommendations with the flexure tests results. The most commonly used methods to evaluate Tg Dynamic Mechanical Analysis (DMA) and Differential Scanning Calorimetry (DSC) were used to study Tg. Two off-shelf structural adhesives were investigated to understand their property variation with temperature. Epoxy coupons were cured at different elevated temperature and humidity environments up to 28 days. A combination of two extreme relative humidity of 0 and 100% and variable curing temperatures between 15 to 80°C were considered. From a test matrix of 300 DMA and over 250 DSC coupons these conclusions were drawn. First, ambient cured thermosets have a linear relationship between Tg and curing temperature, but Tg is reduced if a certain temperature is reached. Second, a fully cured adhesive requires heating treatment. Without a curing regime, designed Tg may never be achieved. Finally, curing time is crucial at the low curing temperatures while it is less significant at the higher curing temperature. The results of Tg investigation were used to select appropriate curing temperature that the adhesives resistance to temperature can be maximised without damaging the mechanical properties. The study helps designs to understand and assess the behaviour of these two adhesives when they are exposed to extreme temperatures. The study increases the awareness that a fully cured adhesive may never be achieved at ambient or low temperatures. It is important to find the mechanical properties and Tg when the coupons are exposed to the same curing temperature. To investigate the influence of glass transition temperature Tg improvement on the performance of EB-FRP strengthened steel structures in flexure at ambient and elevated temperature, nine three metre length beams were designed to behave as a concrete-steel composite bridge deck. The beams were tested in four-point bending. Lap shear, DMA test, and pull-off adhesion samples were prepared and cured at the same conditions and tested at ambient temperature. Six beams were tested under only mechanically loading at ambient temperature, including the control specimen. Five beams were tested at ambient temperature to show the effects of adhesive curing on FRP strengthened sections. A significant increase of load capacity of the adhesive joints was achieved due to the curing of the joints at elevated temperature. The failure occurred was in the same manner. An increase in the load capacity was observed with increasing curing temperature. An increase of approximately 25% was noticed in the ultimate load capacity of the specimens cured at 50°C compared to the specimens cured at 30°C. The load capacity of lap-shear specimens cured at 50°C was 28% higher than the specimens cured at 30°C. Three specimens were tested under mechanical and thermal loading. A bespoke thermal chamber was designed and fabricated to apply a controlled thermal loading. The beams were loaded mechanically up to 350kN, first. The temperature of the specimens was then increased at a rate of 0.8°C/min. The sustained load 350kN remained constant during the heating phase. Digital Image Correlation (DIC) technique was used to detect the slippage of the tip of the FRP plates. The only specimen cured at 30°C showed relatively poor performance compared to the two specimens cured at 50°C. The plate ends started to slip when the adhesive storage modulus from the DMA runs reduced approximately by 15 and 18% for the beams cured at 30 and 50°C respectively. Pull-off adhesion tests confirmed that adequate surface preparation of over 25 MPa was achieved The flexural model for the composite steel section represented to predicate load-deflection behaviour of the specimens using semi-experimental constitutive material law. The model successfully predicts the load-deflection behaviour of specimens, considering the strain hardening contribution. A bond stress analysis is also presented, which counts for the effect of FRP plate moment effect. The experimental and theoretical FRP plate slippage assuming only adhesive degradation with temperature are compared. The analytical bond models cannot predict the experimental failure because the linear elastic material properties were assumed and the failure was adhesion.
|
47 |
Obtenção e caracterização de blendas poliméricas de poli (ácido láctico-co-glicólico) e poli (isopreno) para aplicação como biomaterialMarques, Douglas Ramos January 2011 (has links)
A conformação de dispositivos médicos implantáveis a partir de uma blenda exige o desenvolvimento de um produto com propriedades próximas do comportamento ideal, combinando propriedades térmicas e mecânicas e boa resposta tecidual. O Poli (ácido láctico-co-glicólico) (PLGA) e o Poli (isopreno) (IR) foram escolhidos como componentes da blenda com finalidade de promover boa biocompatibilidade e características mecânicas especificas. As blendas foram obtidas por dissolução dos polímeros em solvente orgânico, seguida de secagem. Para determinar a influência do teor de IR sobre as propriedades da blenda, foram realizados ensaios de espectroscopia na região de infravermelho por transformada de Fourier (FTIR), calorimetria diferencial de varredura (DSC), análise dinâmico-mecânica (DMA), microscopia óptica por luz polarizada (POM), análise de dureza, ensaio de tração e análise de viabilidade celular. A presença de IR na blenda provocou alteração na estrutura molecular semi-cristalina do PLGA, bem como influenciou o comportamento mecânico analisado a partir da curva tensão-deformação do material. A blenda se mostrou biocompativel em ambiente celular e em ensaios preliminares em animais, apresentando potencial para aplicação como biomaterial. / The conformation of an implantable medical device from a polymeric blend requires the development of a product with properties as close as possible of ideal behavior with the combination between thermal and mechanical properties and good tissue response. The poly (lactic-co-glycolic acid) (PLGA) and the poly (isoprene) (IR) were chosen as the blend components to promote good biocompatibility and specific mechanical characteristics. The blends were obtained by dissolution of polymers in organic solvent, followed by drying. In order to determine the IR content influence over the blend properties, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), polarized light optical microscopy (POM), hardness analysis, tensile test and cell viability test were carried out. The IR presence caused changes in semi-crystalline molecular structure of PLGA, as well as actuated over the mechanical response analyzed on material’s stress-strain curve. The blend showed itself biocompatible at cellular environment and at preliminary animal tests, presenting potential for application as biomaterial.
|
48 |
Study of the addition of poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) thermoplastic to epoxy resin for use in self-healing compositesGuerra, ?rick St?fano Silveira 28 April 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-09-04T20:41:24Z
No. of bitstreams: 1
ErickStefanoSilveiraGuerra_DISSERT.pdf: 8653820 bytes, checksum: 2aa743da5d1ccc3d04ee5e239d05a6c2 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-09-06T19:52:51Z (GMT) No. of bitstreams: 1
ErickStefanoSilveiraGuerra_DISSERT.pdf: 8653820 bytes, checksum: 2aa743da5d1ccc3d04ee5e239d05a6c2 (MD5) / Made available in DSpace on 2017-09-06T19:52:51Z (GMT). No. of bitstreams: 1
ErickStefanoSilveiraGuerra_DISSERT.pdf: 8653820 bytes, checksum: 2aa743da5d1ccc3d04ee5e239d05a6c2 (MD5)
Previous issue date: 2017-04-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / O reparo de estruturas comp?sitas danificadas a fim de recuperar condi??es iniciais
e atender requisitos regulat?rios pode ser um grande desafio. Assim, materiais
capazes de se auto-reparar quando danificados s?o de grande interesse. Em uma
das abordagens de auto-reparo estudada na literatura, um material termopl?stico ?
adicionado ? matriz termofixa e o material danificado ? capaz de parcialmente
recuperar suas propriedades mec?nicas depois de um ciclo de reparo. Essa t?cnica
usa calor para reestabelecer parcialmente as propriedades mec?nicas do material
comp?sito. No presente estudo, a modifica??o de resina ep?xi com a adi??o de
poli(etileno-co-metil acrilato-co-glicidil metacrilato) (E-MA-GMA) foi avaliada. A
influ?ncia do tipo de endurecedor (anidrido e amina) empregado nas propriedades
do material tamb?m foi investigada. An?lises din?mico-mec?nicas (DMA) foram
realizadas para averiguar mudan?as nas propriedades viscoel?sticas devido a
adi??o do termopl?stico. Mudan?as qu?micas nas misturas termopl?stico-ep?xi
foram avaliadas por espectroscopia de infravermelho por transformada de Fourier
(FTIR). Microscopia de for?a at?mica (AFM) foi empregada para examinar o papel
da adi??o de termopl?stico na estrutura da rede do ep?xi. A habilidade de reparo foi avaliada comparando ?reas danificadas por uma
indenta??o padr?o na superf?cie das amostras antes e depois do ciclo de reparo
para amostras com e sem a adi??o de E-MA-GMA. Os resultados sugerem a
presen?a de uma segunda fase de E-MA-GMA ap?s a cura, um aumento na
temperatura de transi??o v?trea (Tg) para todas as misturas com termopl?stico
quando comparadas ? ep?xi pura, a presen?a de uma ?nica Tg para misturas EMA-
GMA-ep?xi curadas com anidrido e mudan?as qu?micas e estruturais na rede
ep?xi devido ? adi??o de E-MA-GMA. Al?m disso, o desaparecimento de danos
causados por indenta??es em ?reas do material modificado com o termopl?stico
depois do ciclo de aquecimento confirmam o potencial no uso de E-MA-GMA como
agente de reparo. / Repair of damaged composite structural elements to restore pristine conditions and
meet regulatory requirements can be a great challenge. Thus, materials capable of
self-healing when damaged are of great interest. In one of the self-healing
approaches studied in the literature, thermoplastic is added to a thermosetting matrix
and the damaged material partially recovers its mechanical properties after a healing
cycle. This technique employs heat to trigger the healing process and partially reestablish
the mechanical properties of the composite material. In the present study,
poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) (E-MA-GMA)
thermoplastic was added to epoxy matrix and evaluated as a self-healing agent. The
influence of the type of hardener employed (anhydride or amine) on the properties of
the material was also investigated. Dynamic mechanical thermal analysis (DMTA)
was performed to evaluate changes in viscoelastic properties due to the addition of
thermoplastic. Fourier transform infrared (FTIR) spectroscopy was used to evaluate
chemical alterations in thermoplastic-epoxy systems. Atomic force microscopy (AFM)
was employed to examine the role of thermoplastic addition on epoxy network
structure. Healing ability was assessed by comparison of areas damaged by
indentations on the surface of samples before and after a healing cycle for materials
with and without E-MA-GMA addition. Results suggest the presence of a E-MA-GMA
second phase after curing, an increase in glass transition temperature (Tg) for all
thermoplastic blended samples as compared to neat epoxy, the presence of one
single Tg for epoxy anhydride hardened E-MA-GMA mixtures and chemical and
structural alterations on the epoxy network due to addition of E-MA-GMA. Further,
the elimination of visible damage areas of the material modified with thermoplastic
after a heating cycle supports the potential use of E-MA-GMA as healing agent.
|
49 |
Obtenção e caracterização de blendas poliméricas de poli (ácido láctico-co-glicólico) e poli (isopreno) para aplicação como biomaterialMarques, Douglas Ramos January 2011 (has links)
A conformação de dispositivos médicos implantáveis a partir de uma blenda exige o desenvolvimento de um produto com propriedades próximas do comportamento ideal, combinando propriedades térmicas e mecânicas e boa resposta tecidual. O Poli (ácido láctico-co-glicólico) (PLGA) e o Poli (isopreno) (IR) foram escolhidos como componentes da blenda com finalidade de promover boa biocompatibilidade e características mecânicas especificas. As blendas foram obtidas por dissolução dos polímeros em solvente orgânico, seguida de secagem. Para determinar a influência do teor de IR sobre as propriedades da blenda, foram realizados ensaios de espectroscopia na região de infravermelho por transformada de Fourier (FTIR), calorimetria diferencial de varredura (DSC), análise dinâmico-mecânica (DMA), microscopia óptica por luz polarizada (POM), análise de dureza, ensaio de tração e análise de viabilidade celular. A presença de IR na blenda provocou alteração na estrutura molecular semi-cristalina do PLGA, bem como influenciou o comportamento mecânico analisado a partir da curva tensão-deformação do material. A blenda se mostrou biocompativel em ambiente celular e em ensaios preliminares em animais, apresentando potencial para aplicação como biomaterial. / The conformation of an implantable medical device from a polymeric blend requires the development of a product with properties as close as possible of ideal behavior with the combination between thermal and mechanical properties and good tissue response. The poly (lactic-co-glycolic acid) (PLGA) and the poly (isoprene) (IR) were chosen as the blend components to promote good biocompatibility and specific mechanical characteristics. The blends were obtained by dissolution of polymers in organic solvent, followed by drying. In order to determine the IR content influence over the blend properties, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), polarized light optical microscopy (POM), hardness analysis, tensile test and cell viability test were carried out. The IR presence caused changes in semi-crystalline molecular structure of PLGA, as well as actuated over the mechanical response analyzed on material’s stress-strain curve. The blend showed itself biocompatible at cellular environment and at preliminary animal tests, presenting potential for application as biomaterial.
|
50 |
Design and Implementation of a DMA Controller for Digital Signal ProcessorJiang, Guoyou January 2010 (has links)
The thesis work is conducted in the division of computer engineering at thedepartment of electrical engineering in Linköping University. During the thesiswork, a configurable Direct Memory Access (DMA) controller was designed andimplemented. The DMA controller runs at 200MHz under 65nm digital CMOS technology. The estimated gate count is 26595. The DMA controller has two address generators and can provide two clocksources. It can thus handle data read and write simultaneously. There are 16channels built in the DMA controller, the data width can be 16-bit, 32-bit and64-bit. The DMA controller supports 2D data access by configuring its intelligentlinking table. The DMA is designed for advanced DSP applications and it is notdedicated for cache which has a fixed priority.
|
Page generated in 0.0548 seconds