• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Interfacial Molecular Conformation and Aggregation State on the Energetic Landscape and Performance in Organic Photovoltaics

Ngongang Ndjawa, Guy Olivier 25 November 2016 (has links)
In organic photovoltaics (OPVs) the key processes relevant to device operation such as exciton dissociation and free carriers recombination occur at the donor-acceptor (D-A) interface. OPV devices require the bulk heterojunction (BHJ) architecture to function efficiently. In these BHJs, D-A interfaces are arranged in three dimensions, which makes molecular arrangements at these interfaces ill defined and hard to characterize. In addition, molecular materials used in OPVs are inherently disordered and may exhibit variable degrees of structural order in the same BHJ. Yet, D-A molecular arrangements and structure are crucial because they shape the energy landscape and photovoltaic (PV) performance in OPVs. Studies that use well-defined model systems to look in details at the interfacial molecular structure in OPVs and link it to interfacial energy landscape and device operation are critically lacking. We have used in situ photoelectron spectroscopy and ex situ x-ray scattering to study D-A interfaces in tailored bilayers and BHJs based on small molecule donors. We show preferential miscibility at the D-A interface depending on molecular conformation in zinc phthalocyanine (ZnPc)/ C60 bilayers and we derive implications for exciton dissociation. Using sexithiophene (6T), a crystalline donor, we show that the energy landscape at the D-A interface varies markedly depending on the molecular composition of the BHJ. Both the ionization energies of sexithiophene and C60 shift by over ~0.4 eV while the energy of the charge transfer state shifts by ~0.5 eV depending on composition. Such shifts create a downward energy landscape that helps interfacial excitons to overcome their binding energies. Finally, we demonstrate that when both disordered and ordered phases of D coexist at the interface, low-lying energy states form in ordered phases and significantly limit the Voc in devices. Overall our work underlines the importance of the aggregation and conformation states of molecular materials at and near the D-A interface in determining the operation and performance of OPV devices. This work shows that the role of D-A interfaces in complex BHJ devices can be unraveled through careful experimental design and by in depth characterization of planar heterojunction bilayer devices recreating model interfaces.
2

Performance enhancement of organic photovoltaic cells through nanostructuring and molecular doping

Yu, Shuwen 05 March 2015 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Leistungssteigerung organischer Solarzellen durch Änderung der Geometrie an der Donor-Akzeptor Grenzfläche und dem Einstellen der elektronischen Eigenschaften von Grenzflächen durch molekulares p-Dotieren. Kristalline und gleichmäßige Nanosäulen aus dem organischen Halbleiter Pentazen wurden durch glancing angle deposition (GLAD) hergestellt, die einen ineinandergreifenden Heteroübergang zu Methanofulleren [6,6]-Phenyl-C61-Butansäure Methylester (PCBM) als Akzeptor ermöglichten. Die Kurzschlussspannung der nanosäulenbasierten Solarzellen war signifikant erhöht im Vergleich zu planaren Heteroübergängen zwischen denselben Materialien. Die Leistungssteigerung der Solarzellen konnte maßgebend der vergrößerten Grenzfläche zugewiesen werden, wegen des verringerten Einflusses der kurzen Exciton Diffusionslänge. Molekulares p-Dotieren mit Tetrafluorotetracyanoquinodimethan (F4TCNQ) als Dotand in polyfuranbasierten Solarzellen wurde für verschiede Dotierkonzentrationen untersucht. Ultraviolettphotoelektronenspektroskopie wurde verwendet, um die Veränderungen der Energieniveaus mit zunehmender Dotierkonzentration zu analysieren, welche zu einer Vergrößerung der 0,2 V Kurzschlussspannung auf bis zu 0,4 V führte. Nach Kombination dieser Beobachtung mit Ergebnissen an dotierten Polymerfilmen, insbesondere bezüglich deren Morphologie und Absorptionsverhalten, wurde vorgeschlagen, dass ein resultierender Dipol an der Donor-Akzeptorgrenzfläche präsent ist. Zusammenfassend zeigt die vorliegende Arbeit das Potential sowohl der GLAD Technik als auch des molekularen, elektrischen Dotierens für die Leistungsverbesserung organischer Solarzellen. / The present work mainly focuses on improving the performance of OPVCs by tailoring the donor-acceptor interface geometry and by tuning the electrical properties of interfaces with p-type molecular doping. Crystalline and uniform nanocolumns of pentacene (PEN) and diindenoperylene (DIP) were fabricated by glancing angle deposition (GLAD), forming an interdigitated donor/acceptor heterojunction with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and/or fullerene as the electron acceptor. The short circuit current of nanocolumn-based OPVCs increased significantly compared to planar heterojunction OPVCs made from the same materials. The performance improvement of OPVCs had been verified to be contributed decisively by the donor-acceptor interface area enlargement because of reduced impact of short exciton diffusion length in organic materials. P-type molecular doping as applied in polyfuran (PF) based OPVCs was investigated by using tetrafluorotetracyanoquinodimethane (F4-TCNQ) as the dopant for various doping ratios. Ultraviolet photoelectron spectroscopy (UPS) was applied to analyze the energy level shift with increasing doping ratio leading to the enlargement of the open circuit voltage in OPVCs, from 0.2 V to close to 0.4 V. Combining this observation with the results of doped polymer films, their morphology and absorption behavior, a net dipole pointing towards the donor material at the donor-acceptor interface of OPVCs is proposed. Overall, this work demonstrates the potential of both the GLAD technique and molecular electrical doping for improving the performance of OPVCs.

Page generated in 0.129 seconds