• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 648
  • 175
  • 154
  • 57
  • 40
  • 16
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • Tagged with
  • 1527
  • 207
  • 188
  • 180
  • 161
  • 150
  • 141
  • 106
  • 101
  • 99
  • 93
  • 92
  • 89
  • 86
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Enhanced Oral Activity Response to A77636 in Neonatal 6-Hydroxydopamine-Lesioned Rats

Nuo-Yu, Huang, Kostrzewa, Richard M. 21 February 1994 (has links)
To study the role of dopamine D1 receptors in enhanced oral activity effects of SKF 38393 ((±)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol) in neonatal 6-hydroxydopamine-lesioned rats, SKF 38393 was compared to the full agonist, A77636 ((1R,3S)-3-(1′-adamantyl)-1-aminomethyl-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyran). At 3 days after birth rats were treated with 6-hydroxydopamine HBr (200 μg, salt form, i.c.v.; desipramine (20 mg/kg i.p.), 1 h) or vehicle. At 6-8 months a 0.01 mg/kg dose of A77636 HCl increased oral activity in 6-hydroxydopamine vs. control rats (P < 0.01). A77636 and SKF 38393 produced identical maximal responses of 35-36 oral movements at 0.1 and 1.0 mg/kg, respectively. SCH 23390 (R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) HCl (0.3 mg/kg i.p.) attenuated the response to A77636. Neither A77636 HCl (0.01-1.0 mg/kg i.p.) nor SKF 38393 HCl (0.03-3.0 mg/kg i.p.) induced oral activity in intact rats. The findings demonstrate that A77636 is more potent than SKF 38393, and that supersensitized dopamine D1 receptors are involved in the induction of oral behavior in neonatal 6-hydroxydopamine-lesioned rats.
122

Effect of Melatonin and Dopamine in Site Specific Phosphorylation of Phosducin in Intact Retina

Nkemdirim, Arinzechukwu Okere 31 August 2005 (has links) (PDF)
Phosducin (Pdc) is a 28 kDa binding partner for the G protein beta gamma subunit dimer (G-beta-gamma) found abundantly in the photoreceptor cells of the retina and pineal gland. In the retina, light-dependent changes in cAMP and Ca2+ control the phosphorylation of Pdc at serine 73 and 54, respectively, which in turn controls the binding of Pdc to G protein beta gamma subunit dimer . G protein beta gamma subunit dimer binding has been proposed to facilitate light-driven transport of G protein beta gamma subunit dimer from the site of phototransduction in the outer segment of the photoreceptor cell to the inner segment, thereby decreasing light sensitivity and contributing to the process of light adaptation. Dopamine and melatonin are neuromodulators whose concentrations in the retina vary reciprocally during the circadian cycle, with dopamine high during the day and melatonin high during the night. Together, they control numerous aspects of light and dark adaptation in the retina. In this study, we have investigated the possible roles of dopamine and melatonin in regulating Pdc phosphorylation. Using phosphorylation-site specific antibodies to serines 54 and 73, we show that dopamine decreases the phosphorylation of both sites. This decrease is blocked by D4 receptor antagonists and pertussis toxin, indicating that dopamine causes a decrease in photoreceptor cell cAMP and Ca2+ concentration via the D4 receptor coupled to the Gi protein. Conversely, melatonin increases the phosphorylation of both S54 and S73, most likely via the inhibition of dopamine synthesis. These results demonstrate that dopamine and melatonin control the phosphorylation state of phosducin by changing the concentration of cAMP and Ca2+ in photoreceptor cells, and they suggest that dopamine and melatonin may contribute to the light-induced movement of the photoreceptor G protein by regulating Pdc phosphorylation.
123

THE ROLE OF THE D3 DOPAMINE RECEPTOR IN RODENT BEHAVIORAL RESPONSES TO NOVELTY AND PSYCHOSTIMULANTS

PRITCHARD, LAUREL M. 05 October 2004 (has links)
No description available.
124

Molecular cloning of the goldfish dopamine D2 receptor

謝志恒, Tse, Chi-hang. January 1998 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
125

Aminergic modulation of spontaneous and reflexly generated motor output of crayfish walking leg motor neurons

Gill, Mark D. January 1998 (has links)
No description available.
126

A behavioural and pharmacological study of mutants that influence amine metabolism in Drosophila melanogaster

Meehan, Michael J. January 1989 (has links)
No description available.
127

Role of the perifornical region of the lateral hypothalamus in appetitive conditioning

Morutto, Sara Lidia January 1999 (has links)
No description available.
128

Neuroendocrine regulation of the release of chicken LHRH-I in the domestic fowl : an in vitro study

Robinson, Adrian J. A. F. January 1994 (has links)
No description available.
129

Pharmacological manipulation of aromatic L-amino acid decarboxylase in the rat

Fisher, Andrew January 1999 (has links)
No description available.
130

The attentional deficit in schizophrenia : a neurobiological account

Gray, Nicola Susan January 1991 (has links)
No description available.

Page generated in 0.052 seconds