• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Commissioning of modulator-based IMRT with XiO treatment planning system

Obata, Yasunori, Oguchi, Hiroshi 01 1900 (has links)
No description available.
2

Avaliação da distribuição da dose absorvida em radioterapia com campos irregulares e alargados / Evaluation of absorbed dose distribution in radiotherapy with irregular and extended fields

Giglioli, Milena 27 April 2012 (has links)
Na elaboração do planejamento do tratamento de câncer com radiações ionizantes, o médico radioterapêuta, através dos protocolos clínicos, determina a dose de radiação diária para cada tipo específico de tumor e, junto com o físico, durante os procedimentos de simulação dos campos de tratamento, fazem a localização das áreas a serem tratadas. Em alguns casos, os campos de radiação apresentam dimensões extensas visando englobar todo o volume alvo, o que pode exigir a proteção de regiões anatômicas e órgãos vitais localizados no interior da área irradiada ou mesmo circunvizinhas ao volume alvo, a fim de se garantir o limite de dose absorvida tolerável por estes órgãos. Em geral, estes órgãos críticos localizam-se fora do eixo central do feixe de radiação, até mesmo próximo da periferia do campo, justificando a importância da determinação da dose de radiação em pontos situados fora do feixe central e do isocentro de tratamento, buscando dimensionar as colimações de proteção que dependem do seu posicionamento, da dose de tolerância do ponto anatômico e dos parâmetros radiométricos do equipamentos de radiação utilizados. Este trabalho apresenta uma análise da distribuição de dose absorvida em pontos situados fora do eixo central do feixe de radiação durante procedimentos de radioterapia com campos extensos e irregulares. O código computacional MCNP5 foi usado para construir duas modelagens do cabeçote de um acelerador linear clínico, utilizado como fonte de radiação, e simular o perfil radiométrico do feixe de tratamento para campos irregulares e alargados. Foram realizadas medidas experimentais da curva de Porcentagem de Dose Profunda (PDP) e perfil de dose utilizando câmara de ionização, detectores de diodos e filmes radiográficos. Os valores experimentais foram comparados com os perfis de dose simulados para realização do processo de validação dos cálculos. Após a validação, casos clínicos foram simulados como forma de aplicação da metodologia apresentada. / In treatment planning of radiotherapy, the radiotherapist determines the daily radiation dose for each specific type of tumor and, with the physicist, locates the areas to be treated during the simulation procedures of treatment fields. In some cases the radiation fields have large dimensions in order to cover the entire target volume, which may require protection of the vital organs and anatomical regions located within the irradiated area or surrounding the target volume, in order to ensure the limit absorbed dose tolerated by these agencies. In general, these critical organs are located off-axis beam, even near the periphery of the field, which explains the importance of determining the radiation dose at points outside of the central beam and the isocenter of treatment, aiming size the protection that depend on their location, the tolerance dose of the anatomical point and radiometric parameters of the radiation equipment used. This work presents an analysis of the distribution of absorbed dose at points outside the central axis of the beam during radiotherapy procedures with large and irregular fields. The MCNP5 code was used to construct the modeling of the head of a clinical linear accelerator, used as a radiation source, and simulate the profile of the beam treatment for irregular elds and extended. Measurements were made of the experimental curve Percentage Depth Dose (PDD) and dose prole using ionization chamber detectors, diodes and radiographic films. The experimental values were compared with dose profiles simulated to perform the validation process of the calculations. After validation, clinical cases were simulated as a way of applying the methodology presented.
3

Avaliação da distribuição da dose absorvida em radioterapia com campos irregulares e alargados / Evaluation of absorbed dose distribution in radiotherapy with irregular and extended fields

Milena Giglioli 27 April 2012 (has links)
Na elaboração do planejamento do tratamento de câncer com radiações ionizantes, o médico radioterapêuta, através dos protocolos clínicos, determina a dose de radiação diária para cada tipo específico de tumor e, junto com o físico, durante os procedimentos de simulação dos campos de tratamento, fazem a localização das áreas a serem tratadas. Em alguns casos, os campos de radiação apresentam dimensões extensas visando englobar todo o volume alvo, o que pode exigir a proteção de regiões anatômicas e órgãos vitais localizados no interior da área irradiada ou mesmo circunvizinhas ao volume alvo, a fim de se garantir o limite de dose absorvida tolerável por estes órgãos. Em geral, estes órgãos críticos localizam-se fora do eixo central do feixe de radiação, até mesmo próximo da periferia do campo, justificando a importância da determinação da dose de radiação em pontos situados fora do feixe central e do isocentro de tratamento, buscando dimensionar as colimações de proteção que dependem do seu posicionamento, da dose de tolerância do ponto anatômico e dos parâmetros radiométricos do equipamentos de radiação utilizados. Este trabalho apresenta uma análise da distribuição de dose absorvida em pontos situados fora do eixo central do feixe de radiação durante procedimentos de radioterapia com campos extensos e irregulares. O código computacional MCNP5 foi usado para construir duas modelagens do cabeçote de um acelerador linear clínico, utilizado como fonte de radiação, e simular o perfil radiométrico do feixe de tratamento para campos irregulares e alargados. Foram realizadas medidas experimentais da curva de Porcentagem de Dose Profunda (PDP) e perfil de dose utilizando câmara de ionização, detectores de diodos e filmes radiográficos. Os valores experimentais foram comparados com os perfis de dose simulados para realização do processo de validação dos cálculos. Após a validação, casos clínicos foram simulados como forma de aplicação da metodologia apresentada. / In treatment planning of radiotherapy, the radiotherapist determines the daily radiation dose for each specific type of tumor and, with the physicist, locates the areas to be treated during the simulation procedures of treatment fields. In some cases the radiation fields have large dimensions in order to cover the entire target volume, which may require protection of the vital organs and anatomical regions located within the irradiated area or surrounding the target volume, in order to ensure the limit absorbed dose tolerated by these agencies. In general, these critical organs are located off-axis beam, even near the periphery of the field, which explains the importance of determining the radiation dose at points outside of the central beam and the isocenter of treatment, aiming size the protection that depend on their location, the tolerance dose of the anatomical point and radiometric parameters of the radiation equipment used. This work presents an analysis of the distribution of absorbed dose at points outside the central axis of the beam during radiotherapy procedures with large and irregular fields. The MCNP5 code was used to construct the modeling of the head of a clinical linear accelerator, used as a radiation source, and simulate the profile of the beam treatment for irregular elds and extended. Measurements were made of the experimental curve Percentage Depth Dose (PDD) and dose prole using ionization chamber detectors, diodes and radiographic films. The experimental values were compared with dose profiles simulated to perform the validation process of the calculations. After validation, clinical cases were simulated as a way of applying the methodology presented.
4

Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

Asuni, Ganiyu January 2012 (has links)
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. In vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. In vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
5

Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

Asuni, Ganiyu January 2012 (has links)
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. In vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. In vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
6

Evaluation of a MapCHECK2<sup>TM</sup> Diode Array for High Dose Rate Brachytherapy Quality Assurance

Macey, Nathaniel J. January 2015 (has links)
No description available.
7

A Study of IMRT Pre-Treatment Dose Verification Using a-Si Electronic Portal Imaging Devices

Nichita, Eleodor 04 1900 (has links)
<p>Intensity-Modulated Radiation Treatment (IMRT) requires patient-specific quality assurance measurements, which can benefit from the convenience of using an Electronic Portal Imaging Device (EPID) for dose verification. However, EPIDs have limitations stemming from the non-uniform backscatter due to the support-arm as well as from scatter, glare, and an increased sensitivity to low-energy photons. None of these effects is typically accounted for in a treatment planning system (TPS) model, resulting in errors in calculated EPID response of up to 6%. This work addresses the non-uniform backscatter by directly incorporating a support-arm backscatter region into the TPS geometry. The shape of the backscatter region is adjusted iteratively until the TPS-calculated flood-field planar dose matches the flood-field EPID image The scatter, glare and increased low-energy response are addressed by using a radially-dependent Point-Spread Function (Kernel). The kernel is fitted using a least-squares method so that it best reproduces the EPID-acquired image for a checkerboard field. The backscatter-correction method is implemented for a Varian Clinac equipped with a 40 cm x 30 cm (512 x 384 pixel) EPID and a Pinnacle<sup>3</sup> TPS and tested for several rectangular and IMRT fields. The scatter, glare and energy-response correction kernel is implemented and tested for a simulated checkerboard field and a simulated IMRT field. Agreement between the EPID-measured image and TPS-calculated planar dose map is seen to improve from 6% to 2% when the backscatter region is added to the Pinnacle<sup>3</sup> model. Agreement between the simulated EPID images and simulated TPS images is improved from 14% to approx. 1% when the radially-dependent kernel is used. Simultaneous application of both the backscatter region and Point-Spread Function is a promising direction for future investigations.</p> / Master of Science (MSc)
8

Optimization of Image Guided Radiation Therapy for Lung Cancer Using Limited-angle Projections

Zhang, You January 2015 (has links)
<p>The developments of highly conformal and precise radiation therapy techniques promote the necessity of more accurate treatment target localization and tracking. On-board imaging techniques, especially the x-ray based techniques, have found a great popularity nowadays for on-board target localization and tracking. With an objective to improve the accuracy of on-board imaging for lung cancer patients, the dissertation work focuses on the investigations of using limited-angle on-board x-ray projections for image guidance. The limited-angle acquisition enables scan time and imaging dose reduction and improves the mechanical clearance of imaging.</p><p>First of all, the dissertation developed a phase-matched digital tomosynthesis (DTS) technique using limited-angle (<=30 deg) projections for lung tumor localization. This technique acquires the same traditional motion-blurred on-board DTS image as the 3D-DTS technique, but uses the planning 4D computed tomography (CT) to synthesize a phase-matched reference DTS to register with the on-board DTS for tumor localization. Of the 324 different scenarios simulated using the extended cardiac torso (XCAT) digital phantom, the phase-matched DTS technique localizes the 3D target position with an localization error of 1.07 mm (± 0.57 mm) (average ± standard deviation (S.D.)). Similarly, for the total 60 scenarios evaluated using the computerized imaging reference system (CIRS) 008A physical phantom, the phase-matched DTS technique localizes the 3D target position with an average localization error of 1.24 mm (± 0.87 mm). In addition to the phantom studies, preliminary clinical cases were also studied using imaging data from three lung cancer patients. Using the localization results of 4D cone beam computed tomography (CBCT) as `gold-standard', the phase-matched DTS techniques localized the tumor to an average localization error of 1.5 mm (± 0.5 mm). </p><p>The phantom and patient study results show that the phase-matched DTS technique substantially improved the accuracy of moving lung target localization, as compared to the 3D-DTS technique. The phase-matched DTS technique can provide accurate lung target localizations like 4D-DTS, but with much reduced imaging dose and scan time. The phase-matched DTS technique is also found more robust, being minimally affected by variations of respiratory cycle lengths, fractions of respiration cycle contained within the DTS scan and the scan directions, which potentially enables quasi-instantaneous (within a sub-breathing cycle) moving target verification during radiation therapy, preferably arc therapy.</p><p>Though the phase-matched DTS technique can provide accurate target localization under normal scenarios, its accuracy is limited when the patient on-board breathing experiences large variations in motion amplitudes. In addition, the limited-angle based acquisition leads to severe structural distortions in DTS images reconstructed by the current clinical gold-standard Feldkamp-Davis-Kress (FDK) reconstruction algorithm, which prohibit accurate target deformation tracking, delineation and dose calculation. </p><p>To solve the above issues, the dissertation further developed a prior knowledge based image estimation technique to fundamentally change the landscape of limited-angle based imaging. The developed motion modeling and free-form deformation (MM-FD) method estimates high quality on-board 4D-CBCT images through applying deformation field maps to existing prior planning 4D-CT images. The deformation field maps are solved using two steps: first, a principal component analysis based motion model is built using the planning 4D-CT (motion modeling). The deformation field map is constructed as an optimized linear combination of the extracted motion modes. Second, with the coarse deformation field maps obtained from motion modeling, a further fine-tuning process called free-form deformation is applied to further correct the residual errors from motion modeling. Using the XCAT phantom, a lung patient with a 30 mm diameter tumor was simulated to have various anatomical and respirational variations from the planning 4D-CT to on-board 4D-CBCTs, including respiration amplitude variations, tumor size variations, tumor average position variations, and phase shift between tumor and body respiratory cycles. The tumors were contoured in both the estimated and the `ground-truth' on-board 4D-CBCTs for comparison. 3D volume percentage error (VPE) and center-of-mass error (COME) were calculated to evaluate the estimation accuracy of the MM-FD technique. For all simulated patient scenarios, the average (± S.D.) VPE / COME of the tumor in the prior image without image estimation was 136.11% (± 42.76%) / 15.5 mm (± 3.9 mm). Using orthogonal-view 30 deg scan angle, the average VPE/COME of the tumors in the MM-FD estimated on-board images was substantially reduced to 5.22% (± 2.12%) / 0.5 mm (± 0.4 mm). </p><p>In addition to XCAT simulation, CIRS phantom measurements and actual patient studies were also performed. For these clinical studies, we used the normalized cross-correlation (NCC) as a new similarity metric and developed an updated MMFD-NCC method, to improve the robustness of the image estimation technique to the intensity mismatches between CT and CBCT imaging systems. Using 4D-CBCT reconstructed from fully-sampled on-board projections as `gold-standard', for the CIRS phantom study, the average (± S.D.) VPE / COME of the tumor in the prior image and the tumors in the MMFD-NCC estimated images was 257.1% (± 60.2%) / 10.1 mm (± 4.5 mm) and 7.7% (± 1.2%) / 1.2 mm (± 0.2mm), respectively. For three patient cases, the average (± S.D.) VPE / COME of tumors in the prior images and tumors in the MMFD-NCC estimated images was 55.6% (± 45.9%) / 3.8 mm (± 1.9 mm) and 9.6% (± 6.1%) / 1.1 mm (± 0.5 mm), respectively. With the combined benefits of motion modeling and free-form deformation, the MMFD-NCC method has achieved highly accurate image estimation under different scenarios. </p><p>Another potential benefit of on-board 4D-CBCT imaging is the on-board dose calculation and verification. Since the MMFD-NCC estimates the on-board 4D-CBCT through deforming prior 4D-CT images, the 4D-CBCT inherently has the same image quality and Hounsfield unit (HU) accuracy as 4D-CT and therefore can potentially improve the accuracy of on-board dose verification. Both XCAT and CIRS phantom studies were performed for the dosimetric study. Various inter-fractional variations featuring patient motion pattern change, tumor size change and tumor average position change were simulated from planning CT to on-board images. The doses calculated on the on-board CBCTs estimated by MMFD-NCC (MMFD-NCC doses) were compared to the doses calculated on the `gold-standard' on-board images (gold-standard doses). The absolute deviations of minimum dose (DDmin), maximum dose (DDmax), mean dose (DDmean) and prescription dose coverage (DV100%) of the planning target volume (PTV) were evaluated. In addition, 4D on-board treatment dose accumulations were performed using 4D-CBCT images estimated by MMFD-NCC in the CIRS phantom study. The accumulated doses were compared to those measured using optically stimulated luminescence (OSL) detectors and radiochromic films. </p><p>The MMFD-NCC doses matched very well with the gold-standard doses. For the XCAT phantom study, the average (± S.D.) DDmin, DDmax, DDmean and DV100% (values normalized by the prescription dose or the total PTV volume) between the MMFD-NCC PTV doses and the gold-standard PTV doses were 0.3% (± 0.2%), 0.9% (± 0.6%), 0.6% (± 0.4%) and 1.0% (± 0.8%), respectively. Similarly, for the CIRS phantom study, the corresponding values between the MMFD-NCC PTV doses and the gold-standard PTV doses were 0.4% (± 0.8%), 0.8% (± 1.0%), 0.5% (± 0.4%) and 0.8% (± 0.8%), respectively. For the 4D dose accumulation study, the average (± S.D.) absolute dose deviation (normalized by local doses) between the accumulated doses and the OSL measured doses was 3.0% (± 2.4%). The average gamma index (3%/3mm) between the accumulated doses and the radiochromic film measured doses was 96.1%. The MMFD-NCC estimated 4D-CBCT enables accurate on-board dose calculation and accumulation for lung radiation therapy under different scenarios. It can potentially be valuable for treatment quality assessment and adaptive radiation therapy.</p><p>However, a major limitation of the estimated 4D-CBCTs above is that they can only capture inter-fractional patient variations as they were acquired prior to each treatment. The intra-treatment patient variations cannot be captured, which can also affect the treatment accuracy. In light of this issue, an aggregated kilo-voltage (kV) and mega-voltage (MV) imaging scheme was developed to enable intra-treatment imaging. Through using the simultaneously acquired kV and MV projections during the treatment, the MMFD-NCC method enabled 4D-CBCT estimation using combined kV and MV projections. </p><p>For all XCAT-simulated patient scenarios, the average (± S.D.) VPE / COME of the tumor in the prior image and tumors in the MMFD-NCC estimated images (using kV + open field MV) was 136.11% (± 42.76%) / 15.5 mm (± 3.9 mm) and 4.5% (± 1.9%) / 0.3 mm (± 0.4 mm), respectively. In contrast, the MMFD-NCC estimation using kV + beam's eye view (BEV) MV projections yielded results of 4.3% (± 1.5%) / 0.3 mm (± 0.3 mm). The kV + BEV MV aggregation can estimate the target as accurately as the kV + open field MV aggregation. The impact of this study is threefold: 1. the kV and MV projections can be acquired at the same time. The imaging time will be cut to half as compared to the cases which use kV projections only. 2. The kV and MV aggregation enables intra-treatment imaging and target tracking, since the MV projections can be the side products of the treatment beams (BEV MV). 3. As the BEV MV projections originate from the treatment beams, there will be no extra MV imaging dose to the patient.</p><p>The above introduced 4D-CBCT estimation techniques were all based on limited-angle acquisition. Though limited-angle acquisition enables substantial scan time and dose reduction as compared to the full-angle scan, it is still not real-time and cannot provide `cine' imaging, which refers to the instantaneous imaging with negligible scan time and imaging dose. Cine imaging is important in image guided radiation therapy practice, considering the respirational variations may occur quickly and frequently during the treatment. For instance, the patient may experience a breathing baseline shift after every respiratory cycle. The limited-angle 4D-CBCT approach still requires a scan time of multiple respiratory cycles, which will not be able to capture the baseline shift in a timely manner. </p><p>In light of this issue, based on the previously developed MMFD-NCC method, an AI-FD-NCC method was further developed to enable quasi-cine CBCT imaging using extremely limited-angle (<=6 deg) projections. Using pre-treatment 4D-CBCTs acquired just before the treatment as prior information, AI-FD-NCC enforces an additional prior adaptive constraint to estimate high quality `quasi-cine' CBCT images. Two on-board patient scenarios: tumor baseline shift and continuous motion amplitude change were simulated through the XCAT phantom. Using orthogonal-view 6 deg projections, for the baseline shift scenario, the average (± S.D.) VPE / COME of the tumors in the AI-FD-NCC estimated images was 1.3% (± 0.5%) / 0.4 mm (± 0.1 mm). For the amplitude variation scenario, the average (± S.D.) VPE / COME of the tumors in the AI-FD-NCC estimated images was 1.9% (± 1.1%) / 0.5 mm (± 0.2 mm). The impact of this study is three-fold: first, the quasi-cine CBCT technique enables actual real-time volumetric tracking of tumor and normal tissues. Second, the method enables real-time tumor and normal tissues dose calculation and accumulation. Third, the high-quality volumetric images obtained can potentially be used for real-time adaptive radiation therapy.</p><p>In summary, the dissertation work uses limited-angle on-board x-ray projections to reconstruct/estimate volumetric images for lung tumor localization, delineation and dose calculation. Limited-angle acquisition reduces imaging dose, scan time and improves imaging mechanical clearance. Using limited-angle projections enables continuous, sub respiratory-cycle tumor localization, as validated in the phase-matched DTS study. The combination of prior information, motion modeling, free-form deformation and limited-angle on-board projections enables high-quality on-board 4D-CBCT estimation, as validated by the MM-FD / MMFD-NCC techniques. The high-quality 4D-CBCT not only can be applied for accurate target localization and delineation, but also can be used for accurate treatment dose verification, as validated in the dosimetric study. Through aggregating the kV and MV projections for image estimation, intra-treatment 4D-CBCT imaging was also proposed and validated for its feasibility. At last, the introduction of more accurate prior information and additional adaptive prior knowledge constraints also enables quasi-cine CBCT imaging using extremely-limited angle projections. The dissertation work contributes to lung on-board imaging in many aspects with various approaches, which can be beneficial to the future lung image guided radiation therapy practice.</p> / Dissertation

Page generated in 0.1149 seconds