481 |
A new "double resonance" method for the investigation of atomic and nuclear moments :January 1950 (has links)
[by] F. Bitter [and] J. Brossel. / No more published. / Bibliography: p. 24. / Army Signal Corps Contract No. W-36-039 sc-32037. Dept. of the Army Project No. 3-99-10-022.
|
482 |
Numerical Simulation of Electroosmotic Flow with Step Change in Zeta PotentialChen, X., Lam, Yee Cheong, Chen, X. Y., Chai, J.C., Yang, C. 01 1900 (has links)
Electroosmotic flow is a convenient mechanism for transporting polar fluid in a microfluidic device. The flow is generated through the application of an external electric field that acts on the free charges that exists in a thin Debye layer at the channel walls. The charge on the wall is due to the chemistry of the solid-fluid interface, and it can vary along the channel, e.g. due to modification of the wall. This investigation focuses on the simulation of the electroosmotic flow (EOF) profile in a cylindrical microchannel with step change in zeta potential. The modified Navier-Stoke equation governing the velocity field and a non-linear two-dimensional Poisson-Boltzmann equation governing the electrical double-layer (EDL) field distribution are solved numerically using finite control-volume method. Continuities of flow rate and electric current are enforced resulting in a non-uniform electrical field and pressure gradient distribution along the channel. The resulting parabolic velocity distribution at the junction of the step change in zeta potential, which is more typical of a pressure-driven velocity flow profile, is obtained. / Singapore-MIT Alliance (SMA)
|
483 |
Double-stranded RNA induced gene silencing of neuropeptide genes in sand shrimp, metapenaeus ensis and development of crustacean primary cell culture /Guan, Haoji. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Also available online.
|
484 |
Evaluation and design of double-skin facades for office buildings in hot climatesYellamraju, Vijaya 30 September 2004 (has links)
The main objectives of this research are (a) to investigate the thermal effect of double skin facades in office buildings in hot climates and (b) to propose guidelines for their efficient design based on this evaluation. The study involves the energy performance analysis of two buildings in India. A base case with the existing building skin was simulated for both the cities. The main source for the high cooling loads was found to be heat gain through windows and walls. This led to the evolution of a series of facade strategies with the goals of reducing heat gain, providing ventilation and day-lighting. The buildings were then simulated for their energy performance with the proposed double-skin strategies. Each of these strategies was varied according to the layers constituting the facade, the transparency of the facade and the orientation of the facade to which it is applied. Final comparisons of energy consumption were made between the proposed options and the base case to find the most efficient strategy and also the factors that affected this efficiency. The simulations were done using the building simulation software, Ener-Win. The double skin was simulated as per an approximate and simplistic calculation of the u-value, solar heat gain coefficient and transmissivity properties of the layers constituting the facade. The model relied on logically arrived at assumptions about the facade properties that were approximately within 10% range of measured values. Based on inferences drawn from these simulations, a set of design guidelines comprised of goals and parameters was generated for design of double-skin facades in hot climates typical to most of the Indian subcontinent. It was realized that the double-skin defined typically as a 'pair of glass skins separated by an air corridor' may not be an entirely energy efficient design strategy for hot climates. However, when used appropriately in combination with other materials, in the right orientation and with the right transparency, a double-layered facade turns out to be an energy efficient solution.
|
485 |
Energy management systems on board of electric vehicles, based on power electronicsGuidi, Giuseppe January 2009 (has links)
The core of any electric vehicle (EV) is the electric drive train, intended as the energy conversion chain from the energy tank (typically some kind of rechargeable battery) to the electric motor that converts the electrical energy into the mechanical energy needed for the vehicle motion. The need for on-board electrical energy storage is the factor that has so far prevented pure electric vehicles from conquering significant market share. In fact electrochemical batteries, which are currently the most suitable device for electrical energy storage, have serious limitations in terms of energy and/or power density, cost and safety. All those characteristics reflect in pure electric vehicles being outperformed by standard internal combustion engine (ICE) based vehicles in terms of driving range, time needed to refuel and purchase cost. Electric vehicles do have their distinctive advantages, being intrinsically much more efficient, operating at zero emissions at the pipe, and offering a higher degree of controllability that can potentially enhance driving safety. No wonder then, that electric energy storage technology has attracted considerable R&D investments, resulting in new traction battery packs that are getting closer and closer to the industrial targets. In this scenario of EV technology gaining momentum, power electronics engineers have to come up with newer solutions allowing for more efficient and more reliable utilization of the precious on-board energy that comes in a form that cannot be directly utilized by the motor. At present, most of the research in the area of power electronics for automotive is focused in volume and cost reduction techniques. The increase in power density is pursued by developing components that can be operated at higher temperature, thus relieving the requirements on cooling. In this thesis, the focus is on the development of alternative topologies for the power electronics converters that make use of some peculiarities of the energy storage components and of the electrical drive train in general, rather than being a mere component-level optimization of well established topologies. A novel converter topology is proposed for hybridization of the energy source with a supercapacitor-based power buffer being used to assist the main traction battery. From the functional point of view, the topology implements a bidirectional DC/DC converter. Making use of the fact that the battery terminal voltage is close to constant, an arrangement for the supercapacitors is devised allowing for bidirectional power flow by using power electronics devices of lower ratings than the ones needed in conventional DC/DC converters. At the same time, much smaller magnetic components are needed. Theoretical analysis of the operation of the proposed converter is given, allowing for optimized design. A full-scale experimental prototype rated at 30 kW, intended for use in a pure EV, has been built and tested. Results validate the theory and show that no particular impediment exist to the deployment of the concept in practical applications. Another concept introduced in the thesis is an architecture where the traction inverter is embedded in the energy storage device. The latter is constituted by several modules, as in the case of modern Li-ion battery systems, and each module is equipped with a local power electronics interface, making it functionally equivalent to a controllable voltage source. The result is a modular, distributed system that can be engineered to have very high reliability and also to exhibit self-healing properties. A prototype with a minimum number of modules has been built and tested. Results confirm the effectiveness of the system, and make it a good candidate for deployment in applications where reliability is the most important requirement.
|
486 |
Applying Resource Usage Analysis to Software TestingLiu, Wei-Cheng 02 August 2007 (has links)
With the developing of the software and network environment, software becomes more and more complex. The network attacks which exploit the software vulnerability make the traditional software testing face a crucible challenge. According to the report by the CSI/FBI, the lose cause from Denial-of-Service remains in top 5 highest rank of network attacks in the past 3 years. Besides the network bandwidth consuming, the commonest attack is to exploit the software vulnerabilities. In my research, I found the traditional testing technique could not find the software vulnerabilities efficiently for they just verify the correctness of software. This way of thinking would bypass many software vulnerabilities which do not belong to the logical error such as memory leak.
In another way, some test techniques to solve the resource usage vulnerability were proposed in recent years but the results of them are very primitive. Thus, I try to give the software testing a new definition from the resource usage analysis. I propose 3 test criteria in this paper. Testers could combine these test criteria with existing tools as a guide to test the resource usage of the program. With these test criteria, testers can find out the unhealthy usage of software resource.
|
487 |
Double-Loop Temperature Control of an On-Off Heating SystemLin, Chih-Yuan 14 August 2007 (has links)
This thesis proposes a double-loop on-off temperature control which comprises two loops of compensation. The configuration is simple and the stability and performance can be easily achieved with proper choice of two parameters in the controller. For the performance, the controller switches the current through the heater in order to achieve the goal of power efficiency and temperature regulation; switching noise suppression and small regulation error can be achieved at the same time.
The proposed control scheme is applied to a water heater. The experimental results reveal that the regulable range of temperature is from room temperature to 100 ¢J¡]room temperature ¡Ù 30 ¢J¡^, with temperature regulation error within ¡Ó1 ¢J. It conforms the stability and accuracy of the proposed control scheme.
|
488 |
Double-Loop On-off Velocity Regulation of a Two-Phase Fan MotorLin, Hung-wei 15 August 2007 (has links)
This thesis is concerned with the speed control of a brushless DC (BLDC) fan motor by switching its coil currents. Because fans are the most common cooling devices for computers, the demand for a quit and efficient fan that is capable of automatically regulating its speed according to temperature grows with each passing day. A mixed linear and switching control scheme which consists of two loop of feedback compensation for a two-phase BLDC fan motor is presented. Roughly speaking, the linear outer loop is mainly for speed regulation, and the inner loop is to generate a switching control signal while doing plant compensation. This control structure is simple and effective, emphasizing on low power consumption, accurate velocity regulation and low switching noise. The performance and stability requirement can be easily met by tuning several positive coefficients in the controller. The experiment shows an average steady-state regulation error of 0.563% in the range of fan¡¦s speed from 1050 to 2231 r.p.m.
|
489 |
Single-band and Dual-band Beam Switching Systems and Offset-fed Beam Scanning ReflectarrayLee, Jungkyu 2012 May 1900 (has links)
The reflectarray has been considered as a suitable candidate to replace the conventional parabolic reflectors because of its high-gain, low profile, and beam reconfiguration capability. Beam scanning capability and multi-band operation of the microstrip reflectarray have been main research topics in the reflectarray design. Narrow bandwidth of the reflectarray is the main obstacle for the various uses of the reflectarray. The wideband antenna element with a large phase variation range and a linear phase response is one of the solutions to increase the narrow bandwidth of the reflectarray.
A four beam scanning reflectarray has been developed. It is the offset-fed microstrip reflectarray that has been developed to emulate a cylindrical reflector. Unlike other microstrip reflectarrays which integrates phase tuning devices such as RF MEMS switches and another phase shifters to the reflectarray elements and control the reflected phase, the beam scanning capability of the reflectarray is implemented by a phased array feed antenna. This method can reduce the complexity of the design of the beam switching reflectarray. A simple method has been investigated to develop multi-band elements in this dissertation. In approach to increase the coverage of the operation bands, a six-band reflectarray has been developed with two layers. Each layer covers three frequency bands.
A Butler matrix is one of the useful beamforming networks for a phased array antenna. A Double-Sided Parallel-Strip Line (DSPSL) is adapted for the feeding network of eight array elements. The DSPSL operate very well to feed the microstrip antenna array over the bandwidth to reduce the sidelobe level and a high gain. In another topic of a Butler matrix, a dual-band Butler matrix has been proposed for multi-band applications. A modified Butler matrix is used to reduce a size and a sidelobe level.
The bandwidth of the microstrip antenna is inherently small. A broadband circularly polarized microstrip antenna with dual-offset feedlines is introduced in this dissertation. Aperture-coupled feed method is used to feed the stacked patch antennas and a slotcoupled
directional coupler is used for the circularly polarized operation.
The research presented in this dissertation suggests useful techniques for a beam scanning microstrip reflectarray, phased array antenna, and wideband antenna designs in the modern wireless communication systems.
|
490 |
Nanoscientific investigations of electrode materials for supercapacitorsMalmberg, Helena January 2007 (has links)
This doctoral thesis gives background to the field of electrochemical energy storage in supercapacitors. It attempts to place the supercapacitor device in context of available and future technologies for alternative energy systems for transportation. Limitations of cells and electrodes and key challenges in the supercapacitor development are introduced. One objective of the thesis is to investigate and describe ionic transport in active carbon and possible restrictions in nanostructured porous systems with focus on small (micro and meso) pores. Another is to develop a model suitable for investigations of concentration and potential profiles from a single particle perspective. The results from the studies are presented in this thesis together with the scientific papers this thesis is based on. Studying electrochemical gradients (concentration and potential) of large electrodes and single particles may give important information of the limitations of the material. In larger three-electrode experimental set-ups, these gradients can be studied for electrodes but single particles are not available for experimental studies to the same extent since the matrix of an electrode consist of many particles, all adding to the total gradient of the electrode. The experimental part of this thesis is based on different experimental techniques: Three-electrode experiments for larger electrodes, microelectrode experiments for single particles, numerical simulations using Multiphysics (software) of large electrodes consisting of single particles. Four Papers are appended to the thesis. They present results and discussions regarding ionic transport, surface functionalities and modeling of a particle based supercapacitor electrode. Estimated effective diffusivities for an active carbon containing micro, meso and macropores are presented. Surface functionalities in the form of oxygen-containing groups were present in a carbon studied using two experimental set-ups. Faradaic peaks, previously not reported in activated carbon were seen. The occurrence of Faradaic phenomena in one experimental set-up but not the other is further analyzed and the origin of these peaks discussed. The particle based mathematical model, where galvanostatic and cyclic voltammetry is simulated, is presented. Concentration profiles both in the particles and electrodes are discussed and some of the numerical results are compared with experimental data. / QC 20100809
|
Page generated in 0.0418 seconds