• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Invariantes de germes de aplicações de C^2 em C^3 / Invariant of map germ from C^2 to C^3

Luchesi, Vanda Maria 03 March 2005 (has links)
Sejam f:(C^2,0) to (C^3,0) um germe de aplicação holomorfa de coposto 1 e f_t uma perturbação estável de f. Os pontos singulares de f_t são cross-caps, pontos duplos ou pontos triplos. O número de cross-caps e pontos triplos de f_t e o número de Milnor da curva de pontos duplos de f_t são invariantes do germe f. Neste trabalho estudamos fórmulas para obter estes invariantes e no caso dos germes quasi-homogêneos relacionamos estes invariantes com a A_e-codimensão de f. / Let f:(C^2,0) to (C^3,0) be a holomorphic map-germ with corank 1 and f_t a stable perturbation of f. The singular points of f_t are either cross-caps, double points or triple points. The number of cross-caps and the number of triple points of f_t and the Milnor number of the double points curve of f_t are invariants of the germs f. In this work we study formulas to get these invariants and in the case of quasi-homogeneous germs we relate these invariants with the A_e-codimension of f.
2

Invariantes de germes de aplicações de C^2 em C^3 / Invariant of map germ from C^2 to C^3

Vanda Maria Luchesi 03 March 2005 (has links)
Sejam f:(C^2,0) to (C^3,0) um germe de aplicação holomorfa de coposto 1 e f_t uma perturbação estável de f. Os pontos singulares de f_t são cross-caps, pontos duplos ou pontos triplos. O número de cross-caps e pontos triplos de f_t e o número de Milnor da curva de pontos duplos de f_t são invariantes do germe f. Neste trabalho estudamos fórmulas para obter estes invariantes e no caso dos germes quasi-homogêneos relacionamos estes invariantes com a A_e-codimensão de f. / Let f:(C^2,0) to (C^3,0) be a holomorphic map-germ with corank 1 and f_t a stable perturbation of f. The singular points of f_t are either cross-caps, double points or triple points. The number of cross-caps and the number of triple points of f_t and the Milnor number of the double points curve of f_t are invariants of the germs f. In this work we study formulas to get these invariants and in the case of quasi-homogeneous germs we relate these invariants with the A_e-codimension of f.
3

Lis LKDS 800 / Press LKDS 800

Kolbábek, Lukáš January 2012 (has links)
The present Master´s thesis deals with the concept of press drive of Blanking press LKDS 800 used for blanking in automatic blanking line. The first part of the thesis is dedicated to the individual arrangements of press drives and servo press drives and to the description of main components. The second part of this thesis deals with the structural design of the drive. Based on the computation of the crank mechanism, several design solutions were suggested. From these solutions, the option with the lowest drive height is selected. This option, offers the computation of the main drive, flywheel, spur gearing and clutch/brake combination. This computation is followed by computations of individual construction nodes, which include a design and dimensioning of the individual joggles, shafts and bearings. The drawing of the press and clutch shaft assemblies with a list of items are also included.

Page generated in 0.0558 seconds