• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mobile soil bin development and testing

Zeller, Jonathan January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Daniel Flippo / In 2050 the world’s population is projected to be over 9 billion people, creating a need for more agriculture production than ever before. One way to increase production of crops is to get them planted in an optimum planting window. This allows the crops to take the most advantage of the longer days during the growing season thus increasing their yield. The growing size of farms and reduced amount of farmers puts more pressure on each remaining farmer to mechanize more heavily, and to get more acres planted faster in order to get crops planted in time. Most areas have an optimal planting window of a few weeks. This drives a need for planters to get bigger so one man can plant more acres in a day. Besides getting bigger, planters are also getting able to accurately plant faster. Today many of the new planters are “high speed,” meaning they are able to plant at speeds of 7 to 10 mph. The typical research and discussions of high speed planters tend to focus on the speed effects on the seed placement, emergence, planting rates, active downforce systems, metering systems etc. There is little discussion on the effects these higher planting speeds have on the draft requirements of the row unit itself. There needs to be more knowledge about the relationship between soil and planting tools in order to optimize power and performance of the tools to minimize fuel consumption, labor, and soil compaction. In order to test the draft forces of various tillage and planting tools in different field conditions there needs to be a machine that can repeatedly test multiple tools in multiple field conditions over a wide range of speeds. This paper is about the development of such a machine. The Cultivation Assessment Test Apparatus (CAT App.) is a device used to pull tillage and planting tools at a consistent depth at different speeds measuring the draft and downforce requirements during tests.
2

Development of a test stand for the evaluation of row crop planter automatic downforce systems and the evaluation of a row crop planter electronic drive singulation seed meter.

Strasser, Ryan Scott January 1900 (has links)
Master of Science / Department of Biological & Agricultural Engineering / Ajay Sharda / In recent years, the technology employed on precision row-crop planters has rapidly advanced. These new technologies include automatic downforce control systems and electronic drive singulation seed meters. These new technologies offer producers higher productivity through high speed planting and increased yield potentials through accurate seed spacing and placement. To begin to understand the benefits and performance of these new technologies, research must be conducted that specifically targets these new systems. With this research, producers would be able to better select equipment for their operation and have a deeper understanding of proper system operation and settings. A test stand, of a scissor-lift type design, was developed to evaluate row crop planter automatic downforce systems. Evaluation of a planter’s automatic downforce system is important for understanding the planter’s capability of maintaining target seeding depth throughout varying field conditions. The test stand consists of a horizontal platform that can raise and lower to simulate terrain changes as well as a mechanism to load the planter row unit’s opening discs to simulate varying soil texture. The vertical height of the test stand and the disc load can be varied in real-time based on utilizing real-world scenarios under simulated conditions to evaluate downforce system response. The stand incorporated several sensors to obtain the overall applied downforce, applied disc load, applied gauge wheel load, and hydraulic pressure. The test stand’s capabilities were evaluated and found to be satisfactory for planter downforce system testing. The test stand was then used to evaluate a commercial automatic downforce system when operating under simulated field conditions. Field data was used to create simulations representing soil type changes, planter operating speed changes, and extreme conditions such as a hard, packed clay or rocky soil type. It was found that the evaluated downforce system was able to maintain target gauge wheel load to within ±223 N for at least 94% of the time during all simulations. This would suggest that the planter would be able to maintain target seeding depth for at least 94% of field operations. Another key aspect for precision agricultural planters is to achieve accurate seed spacing at varying speeds. An electronic drive singulation seed metering system was evaluated to gather the meter’s effectiveness for high speed planting during straight and contour farming mode using simulated field conditions. The simulated conditions were used to gather the meter’s response when encountering high planting speeds, accelerations, decelerations, point-rows, and contours. These meters were found to be highly accurate, with less than 1.5% error in target seed meter speed during all simulated conditions. The meters were also found to have a response time that was always 0.34 seconds or less for all simulated conditions.
3

Aerodynamics and performance enhancement of a ground-effect diffuser

Ehirim, Obinna Hyacinth January 2018 (has links)
This study involved experimental and equivalent computational investigations into the automobile-type 3―D flow physics of a diffuser bluff body in ground-effect and novel passive flow-control methods applied to the diffuser flow to enhance the diffuser’s aerodynamic performance. The bluff body used in this study is an Ahmed-like body employed in an inverted position with the slanted section together with the addition of side plates along both sides forming the ramped diffuser section. The first part of the study confirmed reported observations from previous studies that the downforce generated by the diffuser in proximity to a ground plane is influenced by the peak suction at the diffuser inlet and subsequent static pressure-recovery towards the diffuser exit. Also, when the bluff body ride height is gradually reduced from high to low, the diffuser flow as indicated by its force curve and surface flow features undergoes four distinct flow regimes (types A to D). The types A and B regimes are reasonably symmetrical, made up of two low-pressure core longitudinal vortices travelling along both sides of the diffuser length and they increase downforce and drag with reducing ride height. However, below the ride heights of the type B regime, types C and D regimes are asymmetrical because of the breakdown of one vortex; consequently a significant loss in downforce and drag occurs. The second part of the study involved the use ― near the diffuser exit ― of a convex bump on the diffuser ramp surface and an inverted wing between the diffuser side plates as passive flow control devices. The modification of the diffuser geometry with these devices employed individually or in combination, induced a second-stage pressure-drop and recovery near the diffuser exit. This behaviour was due to the radial pressure gradient induced on the diffuser flow by the suction surface ii curvature of the passive devices. As a result of this aerodynamic phenomenon, the diffuser generated across the flow regimes additional downforce, and a marginal increase in drag due to the profile drag induced by the devices.
4

Estudo numérico do controle passivo de camada limite via geradores de vórtices em perfil aerodinâmico de um veículo de competição

Soliman, Paulo Augusto January 2018 (has links)
O presente trabalho apresenta um estudo numérico dos efeitos da aplicação de geometrias geradoras de vórtices, com intuito de controlar passivamente a camada limite, em um perfil aerodinâmico que integra a asa traseira de multi elementos de um veículo de Fórmula SAE. As equações de Navier-Stokes com médias de Reynolds foram resolvidas utilizando o modelo k-ω SST (Shear Stress Transport) para o problema de fechamento da turbulência. Uma metodologia numérica padrão foi definida e utilizada nos diferentes casos analisados. Domínio de cálculo, malha, condições de contorno e critério de convergência foram escolhidos com base em norma SAE para análise numérica de escoamento externo em veículos terrestres. As camadas de volumes prismáticos próximos as superfícies com não-deslizamento foram dimensionadas de forma a resultar em um tratamento de parede adequado ao modelo de turbulência aplicado. O método GCI (Grid Convergence Index) foi utilizado para avaliar a qualidade da malha. Com o intuito de reduzir o custo computacional nos testes com diferentes configurações de geradores de vórtices, apenas parte de interesse do domínio de cálculo foi resolvido, impondo perfis de velocidade, energia cinética da turbulência e dissipação específica em sua entrada. Estas condições foram importadas da simulação com domínio completo resolvida Para verificar a correta captação dos principais efeitos físicos envolvidos, comparações com resultados experimentais foram feitas para 2 casos com escoamentos representativos: o corpo de Ahmed e um perfil aerodinâmico com geradores de vórtices. Além disso, as diferenças entre resolver o domínio completo ou parcial foram estudadas em outro comparativo com resultados experimentais. Concluiu-se que a metodologia numérica foi capaz de obter os coeficientes aerodinâmicos, e suas tendências frente a mudanças de geometria, nos casos estudados. Resolver parcialmente o domínio, impondo perfis em sua entrada, acarretou em diferença nos coeficientes obtidos na ordem de 2% para o coeficiente de sustentação e 7% para o coeficiente de arrasto. O controle passivo via geradores de vórtices foi eficaz em atrasar a separação da camada limite no flap do veículo de Fórmula SAE, as melhoras nos coeficientes de arrasto e sustentação foram da ordem de 7% e 0,3%, respectivamente. / The present work is a numerical study of the effects of the application of vortex generating geometries, in order to passively control the boundary layer, in an aerodynamic profile that integrates a multi-element rear wing of a Formula SAE vehicle. The Reynolds Averaged Navier-Stokes equations were solved using the k-ω Shear Stress Transport model for the turbulence closure problem. A standard numerical methodology was defined and used in the different cases analyzed. Computational domain, mesh, boundary conditions and convergence criteria were chosen based on SAE standard for numerical analysis of external flow in land vehicles. The layers of prismatic volumes near the non-slip surfaces were dimensioned to result in a wall treatment suitable to the applied turbulence model. The Grid Convergence Index (GCI) method was applied to evaluate the mesh quality. In order to reduce the computational cost in tests with different vortex generators configurations, only the part of interest of the calculation domain was solved, imposing velocity, turbulent kinetic energy and specific dissipation profiles on its inlet These conditions were imported from the full domain simulation already solved. To verify the correct capture of the main physical effects involved, comparisons with experimental results were made for 2 cases with representative flows: the Ahmed body and an aerodynamic profile with vortex generators. In addition, the differences between solving the complete or partial domain were studied in another comparative with experimental results. It was concluded that the numerical methodology was able to obtain the aerodynamic coefficients, and their tendencies against changes of geometry, in the cases studied. Partially solving the domain, imposing profiles at its entrance, resulted in a difference in the coefficients obtained in the order of 2% for the lift coefficient and 7% for the drag coefficient. The passive control via vortex generators was effective in delaying the separation of the boundary layer on the flap of the Formula SAE vehicle, the improvements in drag and lift coefficients were of the order of 7% and 0,3%, respectively.
5

Estudo numérico do controle passivo de camada limite via geradores de vórtices em perfil aerodinâmico de um veículo de competição

Soliman, Paulo Augusto January 2018 (has links)
O presente trabalho apresenta um estudo numérico dos efeitos da aplicação de geometrias geradoras de vórtices, com intuito de controlar passivamente a camada limite, em um perfil aerodinâmico que integra a asa traseira de multi elementos de um veículo de Fórmula SAE. As equações de Navier-Stokes com médias de Reynolds foram resolvidas utilizando o modelo k-ω SST (Shear Stress Transport) para o problema de fechamento da turbulência. Uma metodologia numérica padrão foi definida e utilizada nos diferentes casos analisados. Domínio de cálculo, malha, condições de contorno e critério de convergência foram escolhidos com base em norma SAE para análise numérica de escoamento externo em veículos terrestres. As camadas de volumes prismáticos próximos as superfícies com não-deslizamento foram dimensionadas de forma a resultar em um tratamento de parede adequado ao modelo de turbulência aplicado. O método GCI (Grid Convergence Index) foi utilizado para avaliar a qualidade da malha. Com o intuito de reduzir o custo computacional nos testes com diferentes configurações de geradores de vórtices, apenas parte de interesse do domínio de cálculo foi resolvido, impondo perfis de velocidade, energia cinética da turbulência e dissipação específica em sua entrada. Estas condições foram importadas da simulação com domínio completo resolvida Para verificar a correta captação dos principais efeitos físicos envolvidos, comparações com resultados experimentais foram feitas para 2 casos com escoamentos representativos: o corpo de Ahmed e um perfil aerodinâmico com geradores de vórtices. Além disso, as diferenças entre resolver o domínio completo ou parcial foram estudadas em outro comparativo com resultados experimentais. Concluiu-se que a metodologia numérica foi capaz de obter os coeficientes aerodinâmicos, e suas tendências frente a mudanças de geometria, nos casos estudados. Resolver parcialmente o domínio, impondo perfis em sua entrada, acarretou em diferença nos coeficientes obtidos na ordem de 2% para o coeficiente de sustentação e 7% para o coeficiente de arrasto. O controle passivo via geradores de vórtices foi eficaz em atrasar a separação da camada limite no flap do veículo de Fórmula SAE, as melhoras nos coeficientes de arrasto e sustentação foram da ordem de 7% e 0,3%, respectivamente. / The present work is a numerical study of the effects of the application of vortex generating geometries, in order to passively control the boundary layer, in an aerodynamic profile that integrates a multi-element rear wing of a Formula SAE vehicle. The Reynolds Averaged Navier-Stokes equations were solved using the k-ω Shear Stress Transport model for the turbulence closure problem. A standard numerical methodology was defined and used in the different cases analyzed. Computational domain, mesh, boundary conditions and convergence criteria were chosen based on SAE standard for numerical analysis of external flow in land vehicles. The layers of prismatic volumes near the non-slip surfaces were dimensioned to result in a wall treatment suitable to the applied turbulence model. The Grid Convergence Index (GCI) method was applied to evaluate the mesh quality. In order to reduce the computational cost in tests with different vortex generators configurations, only the part of interest of the calculation domain was solved, imposing velocity, turbulent kinetic energy and specific dissipation profiles on its inlet These conditions were imported from the full domain simulation already solved. To verify the correct capture of the main physical effects involved, comparisons with experimental results were made for 2 cases with representative flows: the Ahmed body and an aerodynamic profile with vortex generators. In addition, the differences between solving the complete or partial domain were studied in another comparative with experimental results. It was concluded that the numerical methodology was able to obtain the aerodynamic coefficients, and their tendencies against changes of geometry, in the cases studied. Partially solving the domain, imposing profiles at its entrance, resulted in a difference in the coefficients obtained in the order of 2% for the lift coefficient and 7% for the drag coefficient. The passive control via vortex generators was effective in delaying the separation of the boundary layer on the flap of the Formula SAE vehicle, the improvements in drag and lift coefficients were of the order of 7% and 0,3%, respectively.
6

Estudo numérico do controle passivo de camada limite via geradores de vórtices em perfil aerodinâmico de um veículo de competição

Soliman, Paulo Augusto January 2018 (has links)
O presente trabalho apresenta um estudo numérico dos efeitos da aplicação de geometrias geradoras de vórtices, com intuito de controlar passivamente a camada limite, em um perfil aerodinâmico que integra a asa traseira de multi elementos de um veículo de Fórmula SAE. As equações de Navier-Stokes com médias de Reynolds foram resolvidas utilizando o modelo k-ω SST (Shear Stress Transport) para o problema de fechamento da turbulência. Uma metodologia numérica padrão foi definida e utilizada nos diferentes casos analisados. Domínio de cálculo, malha, condições de contorno e critério de convergência foram escolhidos com base em norma SAE para análise numérica de escoamento externo em veículos terrestres. As camadas de volumes prismáticos próximos as superfícies com não-deslizamento foram dimensionadas de forma a resultar em um tratamento de parede adequado ao modelo de turbulência aplicado. O método GCI (Grid Convergence Index) foi utilizado para avaliar a qualidade da malha. Com o intuito de reduzir o custo computacional nos testes com diferentes configurações de geradores de vórtices, apenas parte de interesse do domínio de cálculo foi resolvido, impondo perfis de velocidade, energia cinética da turbulência e dissipação específica em sua entrada. Estas condições foram importadas da simulação com domínio completo resolvida Para verificar a correta captação dos principais efeitos físicos envolvidos, comparações com resultados experimentais foram feitas para 2 casos com escoamentos representativos: o corpo de Ahmed e um perfil aerodinâmico com geradores de vórtices. Além disso, as diferenças entre resolver o domínio completo ou parcial foram estudadas em outro comparativo com resultados experimentais. Concluiu-se que a metodologia numérica foi capaz de obter os coeficientes aerodinâmicos, e suas tendências frente a mudanças de geometria, nos casos estudados. Resolver parcialmente o domínio, impondo perfis em sua entrada, acarretou em diferença nos coeficientes obtidos na ordem de 2% para o coeficiente de sustentação e 7% para o coeficiente de arrasto. O controle passivo via geradores de vórtices foi eficaz em atrasar a separação da camada limite no flap do veículo de Fórmula SAE, as melhoras nos coeficientes de arrasto e sustentação foram da ordem de 7% e 0,3%, respectivamente. / The present work is a numerical study of the effects of the application of vortex generating geometries, in order to passively control the boundary layer, in an aerodynamic profile that integrates a multi-element rear wing of a Formula SAE vehicle. The Reynolds Averaged Navier-Stokes equations were solved using the k-ω Shear Stress Transport model for the turbulence closure problem. A standard numerical methodology was defined and used in the different cases analyzed. Computational domain, mesh, boundary conditions and convergence criteria were chosen based on SAE standard for numerical analysis of external flow in land vehicles. The layers of prismatic volumes near the non-slip surfaces were dimensioned to result in a wall treatment suitable to the applied turbulence model. The Grid Convergence Index (GCI) method was applied to evaluate the mesh quality. In order to reduce the computational cost in tests with different vortex generators configurations, only the part of interest of the calculation domain was solved, imposing velocity, turbulent kinetic energy and specific dissipation profiles on its inlet These conditions were imported from the full domain simulation already solved. To verify the correct capture of the main physical effects involved, comparisons with experimental results were made for 2 cases with representative flows: the Ahmed body and an aerodynamic profile with vortex generators. In addition, the differences between solving the complete or partial domain were studied in another comparative with experimental results. It was concluded that the numerical methodology was able to obtain the aerodynamic coefficients, and their tendencies against changes of geometry, in the cases studied. Partially solving the domain, imposing profiles at its entrance, resulted in a difference in the coefficients obtained in the order of 2% for the lift coefficient and 7% for the drag coefficient. The passive control via vortex generators was effective in delaying the separation of the boundary layer on the flap of the Formula SAE vehicle, the improvements in drag and lift coefficients were of the order of 7% and 0,3%, respectively.
7

Experimentální měření aerodynamických silových účinků / Experimental measurements of aerodynamic forces

Job, Štefan January 2012 (has links)
This thesis deals with the effect of the aerodynamic forces on a vehicle. It contains the description of the test run of the vehicle, the proposal on how to process the measurements, the processing of the measurements themselves, and the final assessment of the results as to their accuracy and the possibility of repeating the experiment. Furthermore, this thesis contains the comparison of the effect of the individual aerodynamic features on the race car.
8

Fordonsdynamiska effekter av en justerbar multi-element vinge jämfört med en single-element vinge för sportbilar - En teoretisk studie

Lind, Jacob January 2019 (has links)
Sportbilsbranchen har utvecklats i flera decennier och det råder en konstant efterfrågan för nya idéer och teknologier som kan förbättra sportbilar. Detta stämmer framförallt in inom superbilsbranchen, där det är en stor konkurrens mellan företag om vem som först utvecklar nya teknologier som gör deras bilar till de attraktivaste på marknaden.   Ett område inom fordonsutvecklingen är aerodynamik och dess användning för att förbättra fordons prestanda vid körning i raksträckor och i kurvor. Sportbilstillverkarnas mål är oftast att utveckla fordon till att accelerera snabbt, nå en hög topphastighet, kort bromssträcka samt att nå så hög hastighet som möjligt i kurvor utan att glida av vägen. Det finns flera metoder för att uppnå detta, men det sätt som behandlas i denna rapport är anvädningen av bakvingar.   Bakvingar förekommer i flera konfigurationer och modifikationer för att uppfylla användarens önskemål och krav. De vingkonfigurationer som behandlas i detta projekt är single- och multi-elementa vingar. Single-elementa vingar kännetecknas av att de består av en enkel vingarea. Fördelen med dessa konfigurationer är att de producerar låga luftmotstånd vid låga anfallsvinklar, vilket bland annat gör dem optimala för höga hastigheter. Multi-elementa vingar består av två eller fler vingareor. I och med detta kan en större negativ lyftkraft uppnås vilket gör dem optimala vid svängning. Multi-elementa vingar kan även användas vid högre anfallsvinklar med en minskad risk att turbulens uppstår.   Syftet i detta projekt var att ge en teoretisk analys av vad som kan uppnås om en single- och multi-element vinge kombineras i en och samma konfiguration. Tanken är att i praktiken har denna kombinerade vingkonfiguration en klaff som kan fällas ut för att kunna utnyttja båda vingkonfigurationernas fördelar och på så sätt förbättra sportbilars acceleration, topphastighet, bromsningsförmåga samt svängningshastighet.   Metoden bestod av att använda teoretiska beräkningar och analyser för att nå slutsatser om en sådan typ av vinge skulle vara fördelaktig, eller om de existerande konfigurationerna är tillräckliga. Detta gjordes genom att använda en tidigare analys som undersökte kraftskillnaderna hos en single- och multi-element vinge med samma dimensioner. Med vingarnas data kunde beräkningar genomföras på ett typfordon, där resultaten av vingarnas påverkan på fordonets topphastighet, acceleration, bromsning och kurvkörning samlades in och jämfördes. Med dessa jämförelser kunde en slutsats dras om vilka vingkonfigurationer som visade bäst resultat vid de olika situationerna.     Resultatet visar att en vinge som är en kombination av single- och multi-element kan vara fördelaktig över existerande konfigurationer. I och med att den single-elementa vingen har lägst luftmotstånd så passar den bäst vid acceleration vid hög hastighet samt för att uppnå höga topphastigheter. Vid acceleration i låga farter är den multi-elementa vingen mer fördelaktiga på grund av dess högre negativa lyftkraft. Den multi-elementa vingen passar även bättre för kraftigare bromsningsverkan samt högre svängningshastigheter. / The sports car industry has been under constant development for decades and there is a large demand for new ideas and technologies that can improve sports cars. This is particularly true in the super car industry, where there is a constant competition between companies about who first develops new technologies that can make their cars the most attractive on the market.   One area of development is in aerodynamics and how it can be used to improve vehicle performance when driving on straights and in curves. Usually, the goal is to get the vehicle to accelerate faster, reach a high top speed, have a short braking distance and to have as high speed as possible in curves without slipping off the road. There are several methods to achieve this, but the way that is discussed in this report are the use of rear wings.   Rear wings exist in several configurations in order to reach the requests and requirements of the car manufacturer. The wing configurations addressed in this project are single and multi-element wings. Single-element wings are characterized by their single wing area. The advantage of these configurations is that they produce low resistance at low angles of attack, which among other things makes them optimal for high speeds. Multi-element wings consist of two or more wing areas. With this, a larger negative lifting force can be achieved, which makes them optimal for achieving high turning speeds. Multi-element wings can also be used at higher angles of attack without the risk of the wing stalling.   In this project, the goal is to provide a theoretical analysis of what can be achieved if a single and multi-element wing is combined into one and the same configuration. The idea is that in practice, this combined wing has a flap that can be folded in and out in order to be able to utilize the advantages of both wing configurations and thus improve a sports car's acceleration, top speed, braking ability and turning speed.   The method consisted of using theoretical calculations and analyses to reach conclusions as to whether such a type of wing would be advantageous, or if the existing configurations are good enough for what they are used for. This was done by using a previous analysis that examined the differences between a single and multi-element wing of the same dimensions. With the data from these wings, calculations could then be made on a theoretical car, where the results of the wings' influence on top speed, acceleration, braking and curve driving were collected and compared. With these comparisons, a conclusion could be made about which of the wings were best for the different scenarios.   The result shows that a wing with a combination of single and multi-elements can be advantageous. Since the single-element wing has the lowest drag, it fits best at top speeds. When accelerating at low speeds, multi-element wings are more advantageous because of their higher downforce. They also fit better for greater braking effect and higher turning speeds.
9

<i>Advances in Vehicular Aerodynamics</i>

Deepam P Dave (18429423) 03 June 2024 (has links)
<p dir="ltr">This article-based research traces the evolution and advancements of vehicular aerodynamic concepts and emphasizes on the significance of vehicle aerodynamics for high-performance vehicles. The thesis further explores the scope of integrating advanced vehicle aerodynamic concepts into consumer vehicles. The thesis aims to point out the significant improvements achieved with the integration of active aerodynamic concepts in terms of both vehicle performance as well as efficiency figures for consumer vehicles. Additionally, exploring the scope for the development of these advanced active aerodynamic systems as third-party modifications is the secondary objective of the presented research. The thesis also highlights the development and integration of unique active aerodynamic systems featured in performance vehicles and analyzes the performance gains achieved using MATLAB program-based simulations supported by a graphical representation of analyzed output data. The study of Active aerodynamic systems for both performance/track-oriented and consumer vehicles remains to be the primary emphasis for the presented thesis.</p>

Page generated in 0.0278 seconds