• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 297
  • 78
  • 49
  • 46
  • 29
  • 26
  • 8
  • 8
  • 7
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 712
  • 137
  • 123
  • 121
  • 108
  • 73
  • 69
  • 56
  • 55
  • 53
  • 52
  • 49
  • 48
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Quelques problèmes d’optimisation de trainée : De la propulsion par rame à la collecte d’aérosol / Few problems of drag optimisation : From oars propulsion to aerosol collection

Labbe, Romain 17 October 2018 (has links)
La propulsion en aviron résulte de la compensation entre la résistance de l’eau sur la coque et l’accroche des pelles dans l’eau. Pour la collecte de brouillard à l’aide de filets, la dynamique de récupération de l’eau résulte des effets de résistance de l’air sur les gouttelettes combinés aux perturbations de l’écoulement au niveau du filet. Dans cette thèse, — centrée sur les interactions fluide/structure — nous avons cherché à optimiser l’efficacité (de la propulsion et de la collecte) du point de vue hydro et aérodynamique. Pour cela, nous nous sommes appuyés sur des expériences modèles (maquettes de bateaux d’aviron, soufflerie à brouillard) permettant de se placer dans des conditions contrôlables en laboratoire et de s’affranchir des biais humain et climatique.Dans la première partie sur l’aviron, nous avons montré quelle était la longueur de rame optimale pour la propulsion. Puis nous nous sommes intéressés à l’effet du déphasage entre les rameurs et avons montré qu’une parfaite synchronisation permet d’obtenir une vitesse maximale. Enfin, nous avons effectué une étude empirique et expérimentale sur les formes (rapport d’aspect et symétrie) de coques optimales. La seconde partie porte sur la collecte d’eau à l’aide de filets à brouillard qui a débuté par une étude de l’impact des gouttes sur une maille (fibre) du filet puis au sein d’un filet complet. Nous avons enfin étudié l’effet de l’élasticité des fibres et du drainage sur la collecte. Cette étude a mis en évidence l’importance des propriétés de mouillage des fibres sur la collecte et la conception des filets. / The rowing propulsion results from the compensation between water resistance on the hull and the attachment of the oars in the water. For fog collection using nets, the dynamics of water harvesting results from the effects of air resistance on the droplets combined with flow disturbances at the net level. In this thesis, - centered on the fluid / structure interactions - we sought to optimize the efficiency (propulsion and collection) from the hydro and aerodynamic point of view. For this, we relied on model experiments (Robot rowing boats, mist wind tunnel) to be placed in controllable laboratory conditions and to overcome human and climatic bias.In the first part on rowing, we showed what was the optimal oars length for propulsion. Then we were interested in the effect of the phase shift between the rowers and showed that a perfect synchronization makes it possible to obtain a maximum speed. Finally, we carried out an empirical and experimental study on the shapes (aspect ratio and symmetry) of optimal hulls. The second part deals with the collection of water using mist nets, which began with a study of the impact of the drops on a mesh (fiber) of the net and then within a complete net. Finally, we studied the effect of fiber elasticity and drainage on collection. This study has highlighted the importance of fiber wetting properties on net collection and design.
382

Effects and added drag on cetaceans : fishing gear entanglement and external tag

Van der Hoop, Julie M January 2017 (has links)
Thesis: Ph. D., Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Biology; and the Woods Hole Oceanographic Institution), 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 283-314). / Animal movement is motivated in part by energetic constraints, where fitness is maximized by minimizing energy consumption. The energetic cost of movement depends on the resistive forces acting on an animal; changes in this force balance can occur naturally or unnaturally. Fishing gear that entangles large whales adds drag, often altering energy balance to the point of terminal emaciation. An analog to this is drag from tags attached to cetaceans for research and monitoring. This thesis quantifies the effects of drag loading from these two scenarios on fine-scale movements, behaviors and energy consumption. I measured drag forces on fishing gear that entangled endangered North Atlantic right whales and combined these measurements with theoretical estimates of drag on whales' bodies. Entanglement in fishing gear increased drag forces by up to 3 fold. Bio-logging tags deployed on two entangled right whales recorded changes in the diving and fine-scale movement patterns of these whales in response to relative changes in drag and buoyancy from fishing gear and through disentanglement: some swimming patterns were consistently modulated in response. Disentanglement significantly altered dive behavior, and can affect thrust production. Changes in the force balance and swimming behaviors have implications for the survival of chronically entangled whales. I developed two bioenergetics approaches to estimate that chronic, lethal entanglements cost approximately the same amount as the cost of pregnancy and supporting a calf to near-weaning. I then developed a method to estimate drag, energy burden and survival of an entangled whale at detection. This application is essential for disentanglement response and protected species management. Experiments with tagged bottlenose dolphins suggest similar responses to added drag: I determined that instrumented animals slow down to avoid additional energetic costs associated with drag from small bio-logging tags, and incrementally decrease swim speed as drag increases. Metabolic impacts are measurable when speed is constrained. I measured the drag forces on these tags and developed guidelines depending on the relative size of instruments to study-species. Together, these studies quantify the magnitude of added drag in complementary systems, and demonstrate how animals alter their movement to navigate changes in their energy landscape associated with increased drag. / by Julie M. van der Hoop. / Ph. D.
383

Univerzální pracovní plocha ve webovém prohlížeči / Universal Working Sheet in Web Browser

Máčel, Lukáš January 2009 (has links)
This master thesis is engaged in analyzing working desktop accessible from internet by web browser. It describes technologies required for building web interfaces such as DOM, document event model and AJAX. This master thesis contains also design of working desktop prototype. The desktop is implemented as web application based on client-server architecture. The client part of application represents web interface for managing document links placed on desktop. The desktop content is classified by panels and tabs. User can change link arrangement using drag & drop. Server part of application guarantees persistence of desktop configuration and making link offer. Working desktop prototype is implemented by Javascript library Dojo.
384

Experimental Investigations and Direct Numerical Simulations of Rigid Particles in ShearFlows of Newtonian and Complex Fluids

Sarabian, Mohammad 02 June 2020 (has links)
No description available.
385

Study on the suitability of a new method for in-situ viscosity measurement in industrial practice

Syrén, Felicia January 2014 (has links)
In this work cold model experiments in combination with Comsol modeling have been carried out to investigate the possibilities of a new method for industrial inline measurements of slag viscosities. The method aims at measuring the mass of the drag force as a sphere is dragged upwards in a liquid. The sphere was connected to a balance that was elevated at constant velocity. The liquids used were silicon oils of two different viscosities; 0.1 Pa*s and 0.5 Pa*s. A computer logged the mass from which the viscosity was calculated. Comsol modeling was used to show approximately at which time the drag force is constant, and to investigate the wall effect. The importance of laminar flow is discussed. The results show that the method is more suitable for liquids of higher viscosities. The reason is that the drag force is one order of magnitude lower than the other forces in the system. Since the drag force is directly proportional to the viscosity, it becomes larger with higher viscosity. The Comsol model shows that the drag force becomes constant in a few seconds from start of the movement. Comsol gives approximately the same values for the drag force as can be calculated by hand. The viscosities calculated from the experimental data are between two and five times too large for the higher viscosity tested, and between two and ten times too large for the lower viscosity tested. There is a wall effect for the two containers used in the experiments that can be seen both experimentally and by Comsol. Further work and development of the model has to be done before this method possibly could work for industrial purposes.
386

Simulations of Turbulence over Superhydrophobic Surfaces

Martell, Michael B 01 January 2009 (has links) (PDF)
Significant effort has been placed on the development of surfaces which reduce the amount of drag experienced by a fluid as it passes over the surface. Alterations to the fluid itself, as well as the chemical and physical composition of the surface have been investigated with varying success. Investigations into turbulent drag reduction have been mostly limited to those involving bubbles and riblets. Superhydrophobic surfaces, which combine hydrophobic surface chemistry with a regular array of microfeatures, have been shown to provide significant drag reduction in the laminar regime, with the possibility of extending these results into turbulent flows. Direct numerical simulations are used to investigate the drag reducing performance of superhydrophobic surfaces in turbulent channel flow. Slip velocities, wall shear stresses, and Reynolds stresses are considered for a variety of superhydrophobic surface microfeature geometry configurations at friction Reynolds numbers of Re = 180, Re = 395, and Re = 590. This work provides evidence that superhydrophobic surfaces are capable of reducing drag in turbulent flow situations by manipulating the laminar sublayer and turbulent energy cascade. For the largest micro-feature spacing of 90 microns an average slip velocity over 80% of the bulk velocity is obtained, and the wall shear stress reduction is found to be greater than 50%. The simulation results suggest that the mean velocity profile near the superhydrophobic wall continues to scale with the wall shear stress, but is offset by a slip velocity that increases with increasing micro-feature spacing.
387

A Comparison of a Traditional Ranking Format to a Drag-and-Drop Format with Stacking

Timbrook, Jerry P. 29 May 2013 (has links)
No description available.
388

Microscale Study of Drop Migration on Fibers in Coalescing Filters

Dawar, Saru 02 October 2007 (has links)
No description available.
389

Effect of Vortex Shedding on Aerosolization of a Particle from a Hill using Large-Eddy Simulation

Sharma, Amit 29 September 2021 (has links)
No description available.
390

Parameter Estimation of Fundamental Technical Aircraft Information Applied to Aircraft Performance

Vallone, Michael 01 September 2010 (has links) (PDF)
Inverse problems can be applied to aircraft in many areas. One of the disciplines within the aerospace industry with the most openly published data is in the area of aircraft performance. Many aircraft manufacturers publish performance claims, flight manuals and Standard Aircraft Characteristics (SAC) charts without any mention of the more fundamental technical information of the drag and engine data. With accurate tools, generalized aircraft models and a few curve-fitting techniques, it is possible to evaluate vehicle performance and estimate the drag, thrust and fuel consumption (TSFC) with some accuracy. This thesis is intended to research the use of aircraft performance information to deduce these aircraft--specific drag and engine models. The proposed method incorporates models for each performance metric, modeling options for drag, thrust and TSFC, and an inverse method to match the predicted performance to the actual performance. Each of the aircraft models is parametric in nature, allowing for individual parameters to be varied to determine the optimal result. The method discussed in this work shows both the benefits and pitfalls of using performance data to deduce engine and drag characteristics. The results of this method, applied to the McDonnell Douglas DC-10 and Northrop F-5, highlight many of these benefits and pitfalls, and show varied levels of success. A groundwork has been laid to show that this concept is viable, and extension of this work to additional aircraft is possible with recommendations on how to improve this technique.

Page generated in 0.0515 seconds