• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 78
  • 49
  • 46
  • 29
  • 26
  • 8
  • 8
  • 7
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 709
  • 136
  • 123
  • 121
  • 107
  • 73
  • 69
  • 55
  • 55
  • 53
  • 52
  • 48
  • 48
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Modelling the aerodynamics of propulsive system integration at cruise and high-lift conditions

Sibilli, Thierry January 2012 (has links)
Due to a trend towards Ultra High Bypass Ratio engines the corresponding engine/airframe interference is becoming a key aspect in aircraft design. The present economic situation increases the pressure on commercial aviation companies to reduce the Direct Operating Cost, and the environmental situation requires a new generation of aircraft with a lower environmental impact. Therefore detailed aerodynamic investigations are required to evaluate the real benefits of new technologies. The presented research activity is part of a long-term project with the main objective of generating a reliable and accurate tool to predict the performance of an aircraft over the whole flight domain. In particular the aim of this research was to perform advanced CFD in order to establish a tool able to evaluate engine installation effects for different configurations and attitudes. The developed tool can be provided with correlations of the Net Propulsive Force (NPF), the force exerted by the power-plant to the aircraft, as a function of position. This can be done in principle at cruise, hold, climb, descent, take-off and landing, to model the different integration effects at different phases. Due to the complexity of the problem it was only possible at an initial stage to determine these correlations at cruise condition. Two parametric test cases were evaluated, showing that the engine horizontal positioning can influence the mission fuel burn by up to 6.4%. According to the extensive literature review that has been done, this study can be regarded as the first open literature engine position-NPF parametric study using CFD. Even though no correlations were extracted for other conditions; a deployed high-lift wing configuration was also studied in detail, defining the main aerodynamics effects of the engine integration at high angle of attack. A topological study of the high-lift installation vortices is presented in this work and it can be considered the first in the open literature. It should be pointed out that extensive research is currently underway to correctly evaluate the high-lift aerodynamic using CFD. The Propulsive System Integration (PSI) in high-lift conditions is adding flow features to an already demanding problem, making it a real challenge for the numerical methods. Nevertheless the additional effects of a nacelle chine on the maximum lift were also evaluated. The main outcomes of this PhD research were: a coupled performance modelling tool able to handle the effects of engine-airframe integration as a function of geometry and attitude, and a topological study of the high-lift installation vortices. During the course of the work, this research was successfully suggested as an extra activity for the European NEWAC project (New Aero Engine Core Concepts), and resulted in a new deliverable for that project.
472

The Effect of Leading-Edge Geometry on the Induced Drag of a Finite Wing

January 2019 (has links)
abstract: This study identifies the influence that leading-edge shape has on the aerodynamic characteristics of a wing using surface far-field and near-field analysis. It examines if a wake survey is the appropriate means for measuring profile drag and induced drag. The paper unveils the differences between sharp leading-edge and blunt leading-edge wings with the tools of pressure loop, chordwise pressure distribution, span load plots and with wake integral computations. The analysis was performed using Computational Fluid Dynamics (CFD), vortex lattice potential flow code (VORLAX), and a few wind-tunnels runs to acquire data for comparison. This study found that sharp leading-edge wings have less leading-edge suction and higher drag than blunt leading-edge wings. The blunt leading-edge wings have less drag because the normal vector of the surface in the front section of the airfoil develops forces at opposed skin friction. The shape of the leading edge, in conjunction with the effect of viscosity, slightly alter the span load; both the magnitude of the lift and the transverse distribution. Another goal in this study is to verify the veracity of wake survey theory; the two different leading-edge shapes reveals the shortcoming of Mclean’s equation which is only applicable to blunt leading-edge wings. / Dissertation/Thesis / Masters Thesis Aerospace Engineering 2019
473

Simulation of diffusional processes in alloys : techniques and applications

Strandlund, Henrik January 2005 (has links)
This thesis concerns computer simulation of diffusional processes in alloys. The main focus is on the development of simulation techniques for diffusion in single-phase domains, but also diffusion controlled phase-transformations and interfacial processes are discussed. Different one-dimensional simulation techniques for studying the Kirkendall effect are developed and analyzed. Comparisons with experimentally observed marker migration show good agreement for small shifts and comparisons with observed Kirkendall porosity show reasonable agreement under the assumption that a certain supersaturation is needed before the vacancies coalesce into pores. A convenient approach in simulations of kinetics is to use thermodynamic software, e.g. Thermo-Calc, to calculate thermodynamic quantities, e.g. chemical potentials, required in the simulation. The main drawback with such an approach is that it will generate a large amount of additional computational work. To overcome this problem a method that decreases the amount of computational work has been developed. The new method is based on artificial neural networks (ANN). By training the ANN to estimate thermodynamic quantities a significant increase in computational speed was obtained. By calculating the dissipation of available driving force due to diffusion inside migrating interfaces an approach for including the effect of solute drag in computer simulations of grain growth and phase transformations has been developed. The new method is based on an effective interfacial mobility and simulations of grain growth have been performed in binary and ternary systems using experimentally assessed model parameters. / QC 20100930
474

Modelling the aerodynamics of propulsive system integration at cruise and high-lift conditions

Sibilli, Thierry 03 1900 (has links)
Due to a trend towards Ultra High Bypass Ratio engines the corresponding engine/airframe interference is becoming a key aspect in aircraft design. The present economic situation increases the pressure on commercial aviation companies to reduce the Direct Operating Cost, and the environmental situation requires a new generation of aircraft with a lower environmental impact. Therefore detailed aerodynamic investigations are required to evaluate the real benefits of new technologies. The presented research activity is part of a long-term project with the main objective of generating a reliable and accurate tool to predict the performance of an aircraft over the whole flight domain. In particular the aim of this research was to perform advanced CFD in order to establish a tool able to evaluate engine installation effects for different configurations and attitudes. The developed tool can be provided with correlations of the Net Propulsive Force (NPF), the force exerted by the power-plant to the aircraft, as a function of position. This can be done in principle at cruise, hold, climb, descent, take-off and landing, to model the different integration effects at different phases. Due to the complexity of the problem it was only possible at an initial stage to determine these correlations at cruise condition. Two parametric test cases were evaluated, showing that the engine horizontal positioning can influence the mission fuel burn by up to 6.4%. According to the extensive literature review that has been done, this study can be regarded as the first open literature engine position-NPF parametric study using CFD. Even though no correlations were extracted for other conditions; a deployed high-lift wing configuration was also studied in detail, defining the main aerodynamics effects of the engine integration at high angle of attack. A topological study of the high-lift installation vortices is presented in this work and it can be considered the first in the open literature. It should be pointed out that extensive research is currently underway to correctly evaluate the high-lift aerodynamic using CFD. The Propulsive System Integration (PSI) in high-lift conditions is adding flow features to an already demanding problem, making it a real challenge for the numerical methods. Nevertheless the additional effects of a nacelle chine on the maximum lift were also evaluated. The main outcomes of this PhD research were: a coupled performance modelling tool able to handle the effects of engine-airframe integration as a function of geometry and attitude, and a topological study of the high-lift installation vortices. During the course of the work, this research was successfully suggested as an extra activity for the European NEWAC project (New Aero Engine Core Concepts), and resulted in a new deliverable for that project.
475

Effects of surface roughness on the flow characteristics in a turbulent boundary layer

Akinlade, Olajide Ganiyu 04 January 2006
The present understanding of the structure and dynamics of turbulent boundary layers on aerodynamically smooth walls has been clarified over the last decade or so. However, the dynamics of turbulent boundary layers over rough surfaces is much less well known. Nevertheless, there are many industrial and environmental flow applications that require understanding of the mean velocity and turbulence in the immediate vicinity of the roughness elements.</p> <p>This thesis reports the effects of surface roughness on the flow characteristics in a turbulent boundary layer. Both experimental and numerical investigations are used in the present study. For the experimental study, comprehensive data sets are obtained for two-dimensional zero pressure-gradient turbulent boundary layers on a smooth surface and ten different rough surfaces created from sand paper, perforated sheet, and woven wire mesh. The physical size and geometry of the roughness elements and freestream velocity were chosen to encompass both transitionally rough and fully rough flow regimes. Three different probes, namely, Pitot probe, single hot-wire, and cross hot-film, were used to measure the velocity fields in the turbulent boundary layer. A Pitot probe was used to measure the streamwise mean velocity, while the single hot-wire and cross hot-film probes were used to measure the fluctuating velocity components across the boundary layer. The flow Reynolds number based on momentum thickness, , ranged from 3730 to 13,550. The data reported include mean velocity, streamwise and wall-normal turbulence intensities, Reynolds shear stress, triple correlations, as well as skewness and flatness factors. Different scaling parameters were used to interpret and assess both the smooth- and rough-wall data at different Reynolds numbers, for approximately the same freestream velocity. The appropriateness of the logarithmic law and power law proposed by George and Castillo (1997) to describe the mean velocity in the overlap region was also investigated. The present results were interpreted within the context of the Townsends wall similarity hypothesis. </p> <p>Based on the mean velocity data, a novel correlation that relates the skin friction to the ratio of the displacement and boundary layer thicknesses, which is valid for both smooth- and rough-wall flows, was proposed. In addition, it was also found that the application of a mixed outer scale caused the velocity profile in the outer region to collapse onto the same curve, irrespective of Reynolds numbers and roughness conditions. The present results showed that there is a common region within the overlap region of the mean velocity profile where both the log law and power law are indistinguishable, irrespective of the surface conditions. For the power law formulation, functional relationships between the roughness shift, and the power law coefficient and exponent were developed for the transitionally rough flows. The present results also suggested that the effect of surface roughness on the turbulence field depends to some degree on the specific characteristics of the roughness elements and also the component of the Reynolds stress tensor being considered. </p> <p>In the case of the numerical study, a new wall function formulation based on a power law was proposed for smooth and fully rough wall turbulent pipe flow. The new formulation correctly predicted the friction factors for smooth and fully rough wall turbulent pipe flow. The existing two-layer model realistically predicted the velocity shift on a log-law plot for the fully rough turbulent boundary layer. The two-layer model results also showed the effect of roughness is to enhance the level of turbulence kinetic energy and Reynolds shear stress compared to that on a smooth wall. This enhanced level extends into the outer region of the flow, which appears to be consistent with present and recent experimental results for the boundary layer.
476

Design methodology for wing trailing edge device mechanisms

Martins Pires, Rui Miguel 04 1900 (has links)
Over the last few decades the design of high lift devices has become a very important part of the total aircraft design process. Reviews of the design process are performed on a regular basis, with the intent to improve and optimize the design process. This thesis describes a new and innovative methodology for the design and evaluation of mechanisms for Trailing Edge High-Lift devices. The initial research reviewed existing High-Lift device design methodologies and current flap systems used on existing commercial transport aircraft. This revealed the need for a design methodology that could improve the design process of High-Lift devices, moving away from the conventional "trial and error" design approach, and cover a wider range of design attributes. This new methodology includes the use of the innovative design tool called SYNAMEC. This is a state-of-the-art engineering design tool for the synthesis and optimizations of aeronautical mechanisms. The new multidisciplinary design methodology also looks into issues not usually associated with the initial stages of the design process, such as Maintainability, Reliability, Weight and Cost. The availability of the SYNAMEC design tool and its ability to perform Synthesis and Optimization of mechanisms led to it being used as an important module in the development of the new design methodology. The SYNAMEC tool allows designers to assess more mechanisms in a given time than the traditional design methodologies. A validation of the new methodology was performed and showed that creditable results were achieved. A case study was performed on the ATRA - Advance Transport Regional Aircraft, a Cranfield University design project, to apply the design methodology and select from within a group of viable solutions the most suitable type of mechanism for the Variable Camber Wing concept initially defined for the aircraft. The results show that the most appropriate mechanism type for the ATRA Variable Camber Wing is the Link /Track Mechanism. It also demonstrated how a wide range of design attributes can now be considered at a much earlier stage of the design.
477

Effects of surface roughness on the flow characteristics in a turbulent boundary layer

Akinlade, Olajide Ganiyu 04 January 2006 (has links)
The present understanding of the structure and dynamics of turbulent boundary layers on aerodynamically smooth walls has been clarified over the last decade or so. However, the dynamics of turbulent boundary layers over rough surfaces is much less well known. Nevertheless, there are many industrial and environmental flow applications that require understanding of the mean velocity and turbulence in the immediate vicinity of the roughness elements.</p> <p>This thesis reports the effects of surface roughness on the flow characteristics in a turbulent boundary layer. Both experimental and numerical investigations are used in the present study. For the experimental study, comprehensive data sets are obtained for two-dimensional zero pressure-gradient turbulent boundary layers on a smooth surface and ten different rough surfaces created from sand paper, perforated sheet, and woven wire mesh. The physical size and geometry of the roughness elements and freestream velocity were chosen to encompass both transitionally rough and fully rough flow regimes. Three different probes, namely, Pitot probe, single hot-wire, and cross hot-film, were used to measure the velocity fields in the turbulent boundary layer. A Pitot probe was used to measure the streamwise mean velocity, while the single hot-wire and cross hot-film probes were used to measure the fluctuating velocity components across the boundary layer. The flow Reynolds number based on momentum thickness, , ranged from 3730 to 13,550. The data reported include mean velocity, streamwise and wall-normal turbulence intensities, Reynolds shear stress, triple correlations, as well as skewness and flatness factors. Different scaling parameters were used to interpret and assess both the smooth- and rough-wall data at different Reynolds numbers, for approximately the same freestream velocity. The appropriateness of the logarithmic law and power law proposed by George and Castillo (1997) to describe the mean velocity in the overlap region was also investigated. The present results were interpreted within the context of the Townsends wall similarity hypothesis. </p> <p>Based on the mean velocity data, a novel correlation that relates the skin friction to the ratio of the displacement and boundary layer thicknesses, which is valid for both smooth- and rough-wall flows, was proposed. In addition, it was also found that the application of a mixed outer scale caused the velocity profile in the outer region to collapse onto the same curve, irrespective of Reynolds numbers and roughness conditions. The present results showed that there is a common region within the overlap region of the mean velocity profile where both the log law and power law are indistinguishable, irrespective of the surface conditions. For the power law formulation, functional relationships between the roughness shift, and the power law coefficient and exponent were developed for the transitionally rough flows. The present results also suggested that the effect of surface roughness on the turbulence field depends to some degree on the specific characteristics of the roughness elements and also the component of the Reynolds stress tensor being considered. </p> <p>In the case of the numerical study, a new wall function formulation based on a power law was proposed for smooth and fully rough wall turbulent pipe flow. The new formulation correctly predicted the friction factors for smooth and fully rough wall turbulent pipe flow. The existing two-layer model realistically predicted the velocity shift on a log-law plot for the fully rough turbulent boundary layer. The two-layer model results also showed the effect of roughness is to enhance the level of turbulence kinetic energy and Reynolds shear stress compared to that on a smooth wall. This enhanced level extends into the outer region of the flow, which appears to be consistent with present and recent experimental results for the boundary layer.
478

LES of Multiple Jets in Cross-Flow Using a Coupled Lattice Boltzmann-Navier-Stokes Solver

Feiz, Homayoon 14 November 2006 (has links)
Three-dimensional large-eddy simulations (LES) of single and multiple jets in cross-flow (JICF) were conducted using the 19-bit Lattice Boltzmann Equation (LBE) method coupled with a conventional Navier-Stokes (NS) finite-volume scheme. In this coupled LBE-NS approach, the LBE-LES was employed to simulate the flow inside jet nozzles, while the NS-LES was used to simulate the cross-flow. The key application area was to study the micro-blowing technique (MBT) for drag control similar to recent experiments at NASA/GRC. A single jet in the cross-flow case was used for validation purposes, and results were compared with experimental data and full LBE-LES simulation. Good agreement with data was obtained. Transient analysis of flow structures was performed to investigate the contribution of flow structures to the counter-rotating vortex pair (CRVP) formation. It was found that both spanwise roller (at the lee side of the jet) and streamwise vortices (at the jet-side) contribute to the generation of the CRVP. Span-wise roller at the corner of the jet experiences high spanwise vortex compression as well as high streamwise vortex stretch. As a result, they get realigned, mix with the jet-side streamwise vortices, and eventually generate the CRVP. Furthermore, acoustic pulses were used to test the proper information exchange from the LBE domain to the NS domain, and vice-versa. Subsequently, MBT over a flat plate with porosity of 25 percent was simulated using nine jets in a compressible cross-flow at a Mach number of 0.4. Three cases with injection ratios of 0.003, 0.02 and 0.07 were conducted to investigate how the blowing rate impacts skin friction. It is shown that MBT suppressed the near-wall vortices and reduced the skin friction by up to 50 percent. This is in good agreement with experimental data.
479

Studies on Dynamics of Suction Piles during Their Lowering Operations

Huang, Liqing 2010 August 1900 (has links)
Suction piles are used for anchoring the mooring lines at the seafloor. One of the challenges of their installing is the occurrence of the heave resonance of the pile-cable system and possibly the heave induced pitch resonance during the lowering process. When the heave and/or pitch frequency of the vessel which operates the lowering of the pile matches the heave natural frequency of the pile-cable system, the heave resonance may occur, resulting in large heave oscillations of the pile and thus significantly increasing loads on the lowering cable and lowering devices. Furthermore, the large heave may resonantly induce the pitch of a pile. To predict and possibly mitigate the heave/pitch resonance of the pile-cable system during the lowering process, it is crucial to under the mechanism of heave induced pitch resonance and estimate the added-mass and damping coefficients of the pile-cable system accurately. The model tests of the forced heave excitation of pile models were first conducted to investigate the added-mass coefficient for a pile model with different opening area ratios at its top cap at the Haynes Coastal Engineering Laboratory of Texas AandM University. In the model tests, it was observed that the resonant heave may occur if the heave excitation frequency matches the related heave natural frequency and the pitch resonance may be induced by the heave resonance. The results of the following theoretical analysis and numerical simulation of the heave excitation of the pile-cable system are found to be consistent with the related measurements, which is helpful to further understand the physics of lowering a pile-cable system. The results of this study may be used to determine the magnitudes of total heave added-mass and damping coefficient of a pile and the heave natural frequency of the pile-cable system based upon its main characteristics. The heave induced resonant pitch is found to occur when 1) the pitch natural frequency is roughly equal to one half of the heave natural frequency and 2) the heave excitation frequency is approximately equal to the heave natural frequency. If only one of the two conditions is satisfied, no significant pitch resonance will occur. These results may have important implications to the operation of lowering offshore equipment to the seafloor in deep water.
480

Vertically Loaded Anchor: Drag Coefficient, Fall Velocity, and Penetration Depth using Laboratory Measurements

Cenac, William 2011 May 1900 (has links)
The offshore oilfield industry is continuously developing unique and break-through technologies and systems to extract hydrocarbons from ever increasing ocean depths. Due to the extreme depths being explored presently, large anchors are being utilized to secure temporary and permanent facilities over their respective drilling/production site. A vertically loaded, torpedo-style, deepwater mooring anchor developed by Delmar Systems, Inc. is one of these anchors. The OMNI-Max anchor is an efficient, cost-effective alternative for use as a mooring system anchor intended for floating facilities. The OMNI-Max is designed to free-fall towards the ocean bottom and uses its kinetic energy for self-embedment into the soil, providing a mooring system anchor point. Values such as drag coefficient and terminal velocity are vital in predicting embedment depth to obtain the mooring capacity required by the floating facility. Two scaled models of the Mark I OMNI-Max anchor were subjected to a series of tests in the Haynes Coastal Engineering Laboratory at Texas A & M University to evaluate the overall drag coefficient and penetration depth. The 1/24 scale model was tested by measuring the amount of penetration into an artificial mud mixture. The 1/15 scale model was attached to a tow carriage and towed through a water-filled tank to measure the drag forces and evaluate the drag coefficient. The anchor terminal velocity was measured using underwater cameras to track the free fall of the model anchor through 15 ft of water inside the tow tank. The 1/24 scale model penetrated the mud an average of 22 inches from the leading tip of the anchor to the mud surface, approximately 1.5 anchor lengths. The penetration depth increased as impact velocity increased, while the penetration depth decreased as the fins were retracted. The 1/15 scale anchor was towed at 6 different velocities producing a varied total drag coefficient between 0.70 and 1.12 for Reynolds number flows between 3.08E 05 and 1.17E 06. The drag coefficient increased as the fins were retracted and when the mooring rope was attached. The 1/15 scale anchor was allowed to free-fall in the tow tank and obtained an average terminal velocity of and 14.6 feet per second. The drag coefficients ranged from 0.46 to 0.83, which increased as the fins were retracted. When using the results to estimate prototype sized anchor drag coefficient, the average value was estimated to be 0.75.

Page generated in 0.2543 seconds