• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 78
  • 49
  • 46
  • 29
  • 26
  • 8
  • 8
  • 7
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 709
  • 136
  • 123
  • 121
  • 107
  • 73
  • 69
  • 55
  • 55
  • 53
  • 52
  • 48
  • 48
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Surfactant Drag Reduction and Heat Transfer Enhancement

Shi, Haifeng 27 August 2012 (has links)
No description available.
432

An Initial Study to Determine a Friction-Factor Model for Ground Vegetation

Kenney, Peter Martin January 2009 (has links)
No description available.
433

Significance of the Alfvén waves in the thermospheric dynamics in the cusp region / カスプ域の熱圏ダイナミクスにおけるアルフベン波の重要性

Oigawa, Tomokazu 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23709号 / 理博第4799号 / 新制||理||1687(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 田口 聡, 教授 松岡 彩子, 教授 榎本 剛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
434

CONTROL OF SILVER AND SILICON MICROSTRUCTURE VIA LOW DOSE ION IMPLANTATION

Chi, Longxing January 2019 (has links)
Ag thin film dewetting upon high temperature annealing is a non-trivial problem for its application in the semiconductor industry as an ohmic contact metal. Thus, preventing Ag thin film from dewetting is of great importance. Typically, adhesion-promoting layers of chromium are deposited to prevent dewetting, but this deposition has its own process optimization parameters. In this thesis, we introduce an alternative, novel strategy for dewetting prevention via Si or In ion implantation. Electron microscopy including SEM, AFM and AES are conducted to characterize changes in film morphology after ion implantation. Thermodynamic simulation is established to better understand the mechanism of this anti-dewetting approach as well as to predict the performance of doped Ag thin films. It is found that Ag films implanted by a trace amount of Si dopants remain intact after 24 h annealing at 530℃ rather than break down into isolated particles as pure Ag film did. Furthermore, Ag grains in doped samples are much smaller than that in non-doped samples and higher Si or In doses contribute to smaller grains, indicating that a retarding force against film grain growth is introduced by the implanting species. Fortunately, electrical conductivity and optical reflectivity of doped films change trivially, suggesting an insignificant influence of external species on the film performance. The retarding force suppressing film grain growth is demonstrated to be solute drag, which will introduce a size limit towards Ag grain growth. A grain growth model including the solute drag effect is established here to describe the grain growth process. Combining our thermodynamic simulation with our grain growth model in the presence of the solute drag effect, the critical grain diameter to initiate agglomeration of 100 nm thick Ag thin film is calculated to be 350 nm and the critical Si dose to prevent 100 nm thick Ag thin film from dewetting is predicted to be 2.0×1013 per cm2. Finally, we successfully synthesize ultrathin Si thin films via ion implantation and pattern as-deposited Si films by implanting through a hard mask in order to identify some steps towards synthesizing 2-D silicon, or silicene. The as-achieved pattern has an identical shape as that of mask, suggesting Si atoms only diffuse within the implanting regions during thermal annealing. Even though only amorphous Si films are prepared at present, this novel strategy possesses potential to fabricated CMOS-compatible 2-D silicon films for semiconductor industry. / Thesis / Master of Applied Science (MASc)
435

Investigation of open channel flow with unsubmerged rigid vegetation by the lattice Boltzmann method

Jing, H., Cai, Y., Wang, W., Guo, Yakun, Li, C., Bai, Y. 10 September 2019 (has links)
Yes / Aquatic vegetation can significantly affect flow structure, sediment transport, bed scour and water quality in rivers, lakes, reservoirs and open channels. In this study, the lattice Boltzmann method is applied for performing the two dimensional numerical simulation of the flow structure in a flume with rigid vegetation. A multi-relaxation time model is applied to improve the stability of the numerical scheme for flow with high Reynolds number. The vegetation induced drag force is added in lattice Boltzmann equation model with the algorithm of multi-relaxation time in order to improve the simulation accuracy,. Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments. Analysis of the simulated and experimentally measured flow field shows that the numerical simulation can satisfactorily reproduce the laboratory experiments, indicating that the proposed lattice Boltzmann model has high accuracy for simulating flow-vegetation interaction in open channel. / National Natural Science Foundation of China (grant number: 11861003 and 11761005)
436

Queer Temporality and Aesthetics in Taylor Mac's The Lily's Revenge: a Dramaturgical Exploration of the Play at UMass Amherst

Trinidad, Gaven D. 25 October 2018 (has links) (PDF)
This master’s thesis documents the dramaturgical exploration of the spring 2018 University of Massachusetts Amherst Department of Theater’s production of gender non-conforming performance artist Taylor Mac’s The Lily’s Revenge. The thesis is separated into two parts. The first half focuses on my dramaturgical analysis of Mac’s play and its exploration of queer temporality and queer embodiment, asserting the importance of queer aesthetics in American drama and its vital role in shaping the future of LGBTQIA+ politics in the United States. The second half includes reflections on rehearsal processes and performances, giving readers and fellow artists examples of the potential of queer dramaturgical practices that are products of LGBTQIA+ theater and politics in the United States. These reflections show the application of research to rehearsal processes into theatrical performances as directed, designed, and performed by graduate and undergraduate students at UMass Amherst Department of Theater, located in Amherst, Massachusetts, thus giving a trajectory of how the queer and feminist theories written into the play are manifested into a full production through collaborative design, movement, staging, and performance. Drawn from my discoveries while working on The Lily’s Revenge as production dramaturg, I have shaped my own style of collaborative “queer dramaturgy” with the director and designers, hopefully, opening new entry points of future explorations for queer dramaturgs to synthesize theory and practice onto the stage with collaborators from all disciplines and identities.
437

Den matematiska kommunikationens kraft : En kvalitativ studie om lärares användning av kommunikativa strategier och arbetssätt för att främja elevdeltagandet i matematikundervisningen / The power of mathematical communication : A qualitative study on teachers' use of communicative strategies and working methods to promote student participation in mathematics teaching

Ågren, Pernila, Malik, Sara January 2024 (has links)
Syftet med denna studie har varit att undersöka om lärare använder sig av strategier och arbetssätt som möjliggör kommunikation i det matematiska klassrummet. Genom ett sociokulturellt perspektiv och ett matematiskt ramverk baserat på tio kommunikativa drag har vi besvarat vår forskningsfråga. Vi har observerat fyra olika klassrum i årskurs fem och sex och genom observationer samlat in kvalitativa data.  Resultatet belyser lärarens centrala roll och att lärarens val av arbetssätt påverkar antalet kommunikativa strategier som eleverna får tillgång till för att möjliggöra matematiska samtal. Observationerna understryker att olika kommunikativa arbetssätt gynnar elevernas aktiva deltagande och interaktion.  Slutsatsen av studien visar att ett av fyra klassrum möjliggör kommunikation mellan eleverna. Eleverna får tillgång till kommunikation när läraren väljer att använda sig av grupp och helklassdiskussioner med avslutande redovisning för varandra. För att ge eleverna så goda förutsättningar som möjligt att uppfylla läroplanens mål och syfte bör eleverna få tillgång till mer av denna typ av arbetssätt där eleverna får möjlighet att resonera kommunikativt tillsammans.
438

Transport and Structure in Fuel Cell Proton Exchange Membranes

Hickner, Michael Anthony 12 September 2003 (has links)
Transport properties of novel sulfonated wholly aromatic copolymers and the state-of-the-art poly(perfluorosulfonic acid) copolymer membrane for fuel cells, Nafion, were compared. Species transport (protons, methanol, water) in hydrated membranes was found to correspond with the water-self diffusion coefficient as measured by pulsed field gradient nuclear magnetic resonance (PFG NMR), which was used as a measure of the state of absorbed water in the membrane. Generally, transport properties decreased in the order Nafion > sulfonated poly(arylene ether sulfone) > sulfonated poly(imide). The water diffusion coefficients as measured by PFG NMR decreased in a similar fashion indicating that more tightly bound water existed in the sulfonated poly(arylene ether sulfone) (BPSH) and sulfonated poly(imide) (sPI) copolymers than in Nafion. Electro-osmotic drag coefficient (ED number of water molecules conducted through the membrane per proton) studies confirmed that the water in sulfonated wholly aromatic systems is more tightly bound within the copolymer morphology. Nafion, with a water uptake of 19 wt % (λ = 12, where λ = N H2O/SO3H) had an electro-osmotic drag coefficient of 3.6 at 60°C, while BPSH 35 had an electro-osmotic drag coefficient of 1.2 and a water uptake of 40 wt % (λ = 15) under the same conditions. Addition of phosphotungstic acid decreased the total amount of water uptake in BPSH/inorganic composite membranes, but increased the fraction of loosely bound water. Zirconium hydrogen phosphate/BPSH hybrids also showed decreased bulk water uptake, but contrary to the results with phosphotungstic acid, the fraction of loosely bound water was decreased. This dissimilar behavior is attributed to the interaction of phosphotungstic acid with the sulfonic acid groups of the copolymer thereby creating loosely bound water. No such interaction exists in the zirconium hydrogen phosphate materials. The transport properties in these materials were found to correspond with the water-self diffusion coefficients. Proton exchange membrane (PEM) transport properties were also found to be a function of the molecular weight of sulfonated poly(arylene thioether sulfone) (PATS). Low molecular weight (IV ~ 0.69) copolymers absorbed more water on the same ion exchange capacity basis than the high molecular weight copolymers (IV ~ 1.16). Surprisingly, protonic conductivity of the two series was similar. Moreover, the methanol permeability of the low molecular weight copolymers was increased, resulting in lower membrane selectivity and decreased mechanical properties. The feasibility of converting the novel sulfonated wholly aromatic systems to membrane electrode assemblies (MEAs) for use in fuel cells was studied by comparing free-standing membrane properties to those of MEAs assembled with standard Nafion electrodes. Significantly higher interfacial resistance was measured for BPSH samples. Fluorine was introduced into the copolymer backbone by utilizing bisphenol-AF in the copolymer synthesis (6F copolymers). These 6F copolymers showed a markedly lower interfacial resistance with Nafion electrodes and correspondingly greater direct methanol fuel cell performance. It was proposed that the addition of the hexafluoro groups increased the compatibility of the PEM with the highly fluorinated Nafion electrode. / Ph. D.
439

Analysis of Interfacial Processes on Non-Wetting Surfaces

Hatte, Sandeep Shankarrao 04 October 2022 (has links)
Non-wetting surfaces mainly categorized into superhydrophobic (SHS), lubricant-infused (LIS) and solid-infused surfaces (SIS), by virtue of their superior water repellant properties have wide applications in several energy and environmental systems. In this dissertation, the role of non-wetting surfaces toward the enhancement of condensation effectiveness is analyzed by taking into consideration the tube side and shell side individual interfacial energy transport processes namely, drag reduction, convection heat transfer enhancement, fouling mitigation and dropwise condensation heat transfer. First, an analytical solution is developed for effective slip length and, in turn, drag reduction and friction factor on structured non-wetting surfaces. Secondly, by combining the solution for effective slip length on structured non-wetting surfaces and the fractal characterization of generic multiscale rough surfaces, a theoretical analysis of drag reduction, friction factor, and convection heat transfer enhancement is conducted for scalable non-wetting surfaces. Next, fractal representation of rough surfaces is used to theoretical derive the dropwise condensation heat transfer performance on SHS and novel SIS surfaces. The aspect of dynamic fouling mitigation properties of non-wetting surfaces is explored by conducting systematic experiments. Using Taguchi design of experiments, this work for the first time presents a closed formed relationship of fouling mitigation quantified in terms of asymptotic fouling resistance with Reynolds number, foulant concentration and viscosity of the infusion material that represents the different surface types in a unified manner. Furthermore, it was observed that LIS and SIS offer excellent fouling mitigation compared to SHS and conventional smooth surfaces, however only SIS owing to the presence of solid-like infusion materials is observed to be robust for practical applications. / Doctor of Philosophy / Inspired by the naturally occurring water repellant lotus leaf and pitcher plant, metallic surfaces have undergone engineering modifications to their native wetting properties. By generating roughness features ranging from nanometer to micrometer length scales, subjecting them to low surface energy treatments and by choosing an appropriate water repellant infusion material, the water repellant properties seen on lotus leaf and pitcher plant can be engineered. Such water repellant (non-wetting) surface fabrication methods are widely available in the literature however very few are scalable to surface types (e.g. copper, aluminum etc.), surface size (millimeters to meters) and shape (plain, curved, inside of tubes etc.). In this work, considering scalable fabrication methods such as electrodeposition and chemical etching, a systematic analysis is conducted on enhancement of four interfacial processes that are a part of many industrial applications. First, the extent of water repellency by structured non-wetting surfaces for the flow of fluid (water) quantified in terms of effective slip length of flow is analytically derived. Using this theory and a self-similar (fractal) nature of the more generic rough surface designs, a theoretical analysis into the drag reduction, convection heat transfer enhancement on non-wetting surfaces is conducted. Next, using the fractal nature of the rough superhydrophobic surfaces (SHS) a theoretical investigation into dropwise condensation performance is used to derive bounds on condensation heat transfer enhancement. Through systematic experimental investigations, it is shown that a solid-infused surface (SIS) and lubricant-infused surfaces (LIS) which, respectively, incorporate a polymer and a slippery lubricant in the interstitial region of metallic asperities, exhibit superior dynamic mineral fouling mitigation performance compared to SHS and conventional smooth surfaces. In addition, it is demonstrated that SIS is a far robust and durable choice when compared to LIS for use in the long run.
440

Investigation of Momentum and Heat Transfer in Flow Past Suspensions of Non-Spherical Particles

Cao, Ze 11 March 2021 (has links)
Investigation of momentum and heat transfer between the fluid and solid phase is critical to the study of fluid-particle systems. Dense suspensions are characterized by the solid fraction (ratio of solid volume to total volume), the particle Reynolds number, and the shape of the particle. The behavior of non-spherical particles deviates considerably from spherical particle shapes which have been studied extensively in the literature. Momentum transfer, to first-order, is driven by drag forces experienced by the particles in suspension, followed by lift and lateral forces, and also through the transmission of fluid torque to the particles. The subject of this thesis is a family of prolate ellipsoidal particle geometries of aspect ratios (AR) 2.5, 5.0 and 10.0 at nominal solid fractions (φ) between 0.1 and 0.3, and suspensions of cylinders of AR=0.25. The nominal particle Reynolds number (Re) is varied between 10 to 200, representative of fluidized beds. Fluid forces and heat transfer coefficients are obtained numerically by Particle Resolved Simulations (PRS) using the Immersed Boundary Method (IBM). The method enables the calculation of the interstitial flow and pressure field surrounding each particle in suspension leading to the direct integration of fluid forces acting on each particle in the suspension. A substantial outcome of the research is the development of a new drag force correlation for random suspensions of prolate ellipsoids over the full range of geometries and conditioned studied. In many practical applications, especially as the deviation from the spherical shape increases, particles are not oriented randomly to the flow direction, resulting in suspensions which have a mean preferential orientation. It is shown that the mean suspension drag varies linearly with the orientation parameter, which varies from -2.0 for particles oriented parallel to the flow direction to 1.0 for particles normal to the flow direction. This result is significant as it allows easy calculation of drag force for suspension with any preferential orientation. The heat transfer coefficient or Nusselt number is investigated for prolate ellipsoid suspensions. Significantly, two methods of calculating the heat transfer coefficient in the literature are reconciled and it is established that one asymptotes to the other. It is also established that unlike the drag force, at low Reynolds number the suspension mean heat transfer coefficient is very sensitive to the spatial distribution of particles or local-to-particle solid fractions. For the same mean solid fraction, suspensions dominated by particle clusters or high local solid fractions can exhibit Nusselt numbers which are lower than the minimum Nusselt number imposed by pure conduction on a single particle in isolation. This results from the dominant effect of thermal wakes at low Reynolds numbers. As the Reynolds number increases, the effect of particle clusters on heat transfer becomes less consequential. For the 0.25 aspect ratio cylinder, it was found that while existing correlations under predicted the drag forces, a sinusoidal function F_(d,θ)=F_(d,θ=0°)+(F_(d,θ=90°)-F_(d,θ=0°) )sin⁡(θ) captured the variation of normalized drag with respect to inclination angle over the range 10≤Re≤300 and 0≤φ≤0.3. Further the mean ensemble drag followed F_d=F_(d,θ=0°)+1/2(F_(d,θ=90°)-F_(d,θ=0°)). It was shown that lift forces were between 20% to 80% of drag forces and could not be neglected in models of fluid-particle interaction forces. Comparing the pitching fluid torque to collision torque during an elastic collision showed that as the particle equivalent diameter, density, and collision velocities decreased, fluid torque could be of the same order of magnitude as collisional torque and it too could not be neglected from models of particle transport in suspensions. / Doctor of Philosophy / Momentum and heat exchange between the fluids (air, water…) and suspensions of solid particles plays a critical role in power generation, chemical processing plants, pharmaceuticals, in the environment, and many other applications. One of the key components in momentum exchange are the forces felt by the particles in the suspension due to the flow of the fluid around them and the amount of heat the fluid can transfer to or from the particles. The fluid forces and heat transfer depend on many factors, chief among them being the properties of the fluid (density, viscosity, thermal properties) and the properties of the particles in the suspension (size, shape, density, thermal properties, concentration). This introduces a wide range of parameters that have the potential to affect the way the fluid and particles behave and move. Experimental measurements are very difficult and expensive to conduct in these systems and computational modeling can play a key role in characterization. For accuracy, computational models have to have the correct physical laws encoded in the software. The objective of this thesis is to use very high-fidelity computer models to characterize the forces and heat transfer under different conditions to develop general formulas or correlations which can then be used in less expensive computer models. Three basic particle shapes are considered in this study, a sphere, a disk like cylindrical particles, and particles of ellipsoidal shapes. More specifically, Particle Resolved Simulations of flow through suspensions of ellipsoids with aspect ratio of 2.5, 5, 10 and cylinders with aspect ratio of 0.25 are performed. The Reynolds number range covered is [10, 200] for ellipsoids and [10, 300] for cylinders with solid fraction range of [0.1, 0.3]. New fluid drag force correlations are proposed for the ellipsoid and cylinder suspensions, respectively, and heat transfer behavior is also investigated.

Page generated in 0.0279 seconds